Non-specific phospholipases C (NPCs) were discovered as a novel type of plant phospholipid-cleaving enzyme homologous to bacterial phosphatidylcholine-specific phospholipases C and responsible for lipid conversion during phosphate-limiting conditions. The six-gene family was established in Arabidopsis, and growing evidence suggests the involvement of two articles NPCs in biotic and abiotic stress responses as well as phytohormone actions. In addition, the diacylglycerol produced via NPCs is postulated to participate in membrane remodelling, general lipid metabolism and cross-talk with other phospholipid signalling systems in plants. This review summarises information concerning this new plant protein family and focusses on its sequence analysis, biochemical properties, cellular and tissue distribution and physiological functions. Possible modes of action are also discussed.
Phosphatidylcholine-hydrolysing phospholipase C, also known as non-specific phospholipase C (NPC), is a new member of the plant phospholipase family that reacts to environmental stresses such as phosphate deficiency and aluminium toxicity, and has a role in root development and brassinolide signalling. Expression of NPC4, one of the six NPC genes in Arabidopsis, was highly induced by NaCl. Maximum expression was observed from 3 h to 6 h after the salt treatment and was dependent on salt concentration. Results of histochemical analysis of PNPC4:GUS plants showed the localization of salt-induced expression in root tips. On the biochemical level, increased NPC enzyme activity, indicated by accumulation of diacylglycerol, was observed as early as after 30 min of salt treatment of Arabidopsis seedlings. Phenotype analysis of NPC4 knockout plants showed increased sensitivity to salinity as compared with wild-type plants. Under salt stress npc4 plants had shorter roots, lower fresh weight, and reduced seed germination. Expression levels of abscisic acid-related genes ABI1, ABI2, RAB18, PP2CA, and SOT12 were substantially reduced in salt-treated npc4 plants. These observations demonstrate a role for NPC4 in the response of Arabidopsis to salt stress.
The plant selective autophagy cargo receptor neighbour of breast cancer 1 gene (NBR1) has been scarcely studied in the context of abiotic stress. We wanted to expand this knowledge by using Arabidopsis thaliana lines with constitutive ectopic overexpression of the AtNBR1 gene (OX lines) and the AtNBR1 KnockOut (KO lines). Transcriptomic analysis of the shoots and roots of one representative OX line indicated differences in gene expression relative to the parental (WT) line. In shoots, many differentially expressed genes, either up-or down-regulated, were involved in responses to stimuli and stress. In roots the most significant difference was observed in a set of downregulated genes that is mainly related to translation and formation of ribonucleoprotein complexes. The link between AtNBR1 overexpression and abscisic acid (ABA) signalling was suggested by an interaction network analysis of these differentially expressed genes. Most hubs of this network were associated with ABA signalling. Although transcriptomic analysis suggested enhancement of ABA responses, ABA levels were unchanged in the OX shoots. Moreover, some of the phenotypes of the OX (delayed germination, increased number of closed stomata) and the KO lines (increased number of lateral root initiation sites) indicate that AtNBR1 is essential for fine-tuning of the ABA signalling pathway. The interaction of AtNBR1 with three regulatory proteins of ABA pathway (ABI3, ABI4 and ABI5) was observed in planta. It suggests that AtNBR1 might play role in maintaining the balance of ABA signalling by controlling their level and/or activity. Autophagy is defined as a catabolic process responsible for degradation of cellular contents. Evolutionarily conserved, autophagy-related (ATG) proteins are organised in protein complexes to form an autophagosome (a double-membrane vesicle around the cargo) and manage its intracellular transport and fusion with the vacuole, where the cargo is degraded in plants. Autophagy is implicated in almost every aspect of plant growth, from embryogenesis to senescence, and in various stress responses, as recently reviewed 1-7. Autophagy contributes to nutrient remobilisation during mineral starvation as well as during organ senescence e.g. remobilisation of nitrogen from the senescing leaves to seeds (see recent review 8 and references therein). Arabidopsis thaliana autophagy-defective mutants are hypersensitive to carbon and nitrogen starvation, displaying early senescence even under nutrient-rich conditions (see recent review 9 and references therein). Nutrient starvation and other abiotic stress conditions, such as heat, drought, saline and osmotic stress, oxidative stress, endoplasmic reticulum stress or sugar excess increase autophagic flux (see recent review 10 and references therein). Autophagy is tightly controlled to avoid excessive degradation of the cellular content. In normal conditions the process runs at a baseline level that increases when developmental and/or nutritional signals promote assembly of the ATG1/ATG13 autophag...
Summary Recognition of pathogen‐associated molecular patterns (PAMPs) is crucial for plant defence against pathogen attack. The best characterized PAMP is flg22, a 22 amino acid conserved peptide from flagellin protein. In Arabidopsis thaliana, flg22 is recognized by the flagellin sensing 2 (FLS2) receptor. In this study, we focused on biotic stress responses triggered by flg22 after exposure to temporary heat stress (HS). It is important to study the reactions of plants to multiple stress conditions because plants are often exposed simultaneously to a combination of both abiotic and biotic stresses. Transient early production of reactive oxygen species (ROS) is a well‐characterized response to PAMP recognition. We demonstrate the strong reduction of flg22‐induced ROS production in A. thaliana after HS treatment. In addition, a decrease in FLS2 transcription and a decrease of the FLS2 presence at the plasma membrane are shown after HS. In summary, our data show the strong inhibitory effect of HS on flg22‐triggered events in A. thaliana . Subsequently, temporary HS strongly decreases the resistance of A. thaliana to Pseudomonas syringae . We propose that short exposure to high temperature is a crucial abiotic stress factor that suppresses PAMP‐triggered immunity, which subsequently leads to the higher susceptibility of plants to pathogens.
The Arabidopsis non-specific phospholipase C1 (NPC) protein family is encoded by the genes NPC1 – NPC6. It has been shown that NPC4 and NPC5 possess phospholipase C activity; NPC3 has lysophosphatidic acid phosphatase activity. NPC3, 4 and 5 play roles in the responses to hormones and abiotic stresses. NPC1, 2 and 6 has not been studied functionally yet. We found that Arabidopsis NPC1 expressed in Escherichia coli possesses phospholipase C activity in vitro. This protein was able to hydrolyse phosphatidylcholine to diacylglycerol. NPC1-green fluorescent protein was localized to secretory pathway compartments in Arabidopsis roots. In the knock out T-DNA insertion line NPC1 (npc1) basal thermotolerance was impaired compared with wild-type (WT); npc1 exhibited significant decreases in survival rate and chlorophyll content at the seventh day after heat stress (HS). Conversely, plants overexpressing NPC1 (NPC1-OE) were more resistant to HS compared with WT. These findings suggest that NPC1 is involved in the plant response to heat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.