Objectives The primary objective of this study is to test the hypothesis that administration of dexamethasone 20 mg is superior to a 6 mg dose in adult patients with moderate or severe ARDS due to confirmed COVID-19. The secondary objective is to investigate the efficacy and safety of dexamethasone 20 mg versus dexamethasone 6 mg. The exploratory objective of this study is to assess long-term consequences on mortality and quality of life at 180 and 360 days. Trial design REMED is a prospective, phase II, open-label, randomised controlled trial testing superiority of dexamethasone 20 mg vs 6 mg. The trial aims to be pragmatic, i.e. designed to evaluate the effectiveness of the intervention in conditions that are close to real-life routine clinical practice. Participants The study is multi-centre and will be conducted in the intensive care units (ICUs) of ten university hospitals in the Czech Republic. Inclusion criteria Subjects will be eligible for the trial if they meet all of the following criteria: 1. Adult (≥18 years of age) at time of enrolment; 2. Present COVID-19 (infection confirmed by RT-PCR or antigen testing); 3. Intubation/mechanical ventilation or ongoing high-flow nasal cannula (HFNC) oxygen therapy; 4. Moderate or severe ARDS according to Berlin criteria: • Moderate – PaO2/FiO2 100–200 mmHg; • Severe – PaO2/FiO2 < 100 mmHg; 5. Admission to ICU in the last 24 hours. Exclusion criteria Subjects will not be eligible for the trial if they meet any of the following criteria: 1. Known allergy/hypersensitivity to dexamethasone or excipients of the investigational medicinal product (e.g. parabens, benzyl alcohol); 2. Fulfilled criteria for ARDS for ≥14 days at enrolment; 3. Pregnancy or breastfeeding; 4. Unwillingness to comply with contraception measurements from enrolment until at least 1 week after the last dose of dexamethasone (sexual abstinence is considered an adequate contraception method); 5. End-of-life decision or patient is expected to die within next 24 hours; 6. Decision not to intubate or ceilings of care in place; 7. Immunosuppression and/or immunosuppressive drugs in medical history: a) Systemic immunosuppressive drugs or chemotherapy in the past 30 days; b) Systemic corticosteroid use before hospitalization; c) Any dose of dexamethasone during the present hospital stay for COVID-19 for ≥5 days before enrolment; d) Systemic corticosteroids during present hospital stay for conditions other than COVID-19 (e.g. septic shock); 8. Current haematological or generalized solid malignancy; 9. Any contraindication for corticosteroid administration, e.g. • intractable hyperglycaemia; • active gastrointestinal bleeding; • adrenal gland disorders; • presence of superinfection diagnosed with locally established clinical and laboratory criteria without adequate antimicrobial treatment; 10. Cardiac arrest before ICU admission; 11. Participation in another interventional trial in the last 30 days. Intervention and comparator Dexamethasone solution for injection/infusion is the investigational medicinal product as well as the comparator. The trial will assess two doses, 20 mg (investigational) vs 6 mg (comparator). Patients in the intervention group will receive dexamethasone 20 mg intravenously once daily on day 1–5, followed by dexamethasone 10 mg intravenously once daily on day 6–10. Patients in the control group will receive dexamethasone 6 mg day 1–10. All authorized medicinal products containing dexamethasone in the form of solution for i.v. injection/infusion can be used. Main outcomes Primary endpoint: Number of ventilator-free days (VFDs) at 28 days after randomisation, defined as being alive and free from mechanical ventilation. Secondary endpoints a) Mortality from any cause at 60 days after randomisation; b) Dynamics of inflammatory marker (C-Reactive Protein, CRP) change from Day 1 to Day 14; c) WHO Clinical Progression Scale at Day 14; d) Adverse events related to corticosteroids (new infections, new thrombotic complications) until Day 28 or hospital discharge; e) Independence at 90 days after randomisation assessed by Barthel Index. The long-term outcomes of this study are to assess long-term consequences on mortality and quality of life at 180 and 360 days through telephone structured interviews using the Barthel Index. Randomisation Randomisation will be carried out within the electronic case report form (eCRF) by the stratified permuted block randomisation method. Allocation sequences will be prepared by a statistician independent of the study team. Allocation to the treatment arm of an individual patient will not be available to the investigators before completion of the whole randomisation process. The following stratification factors will be applied: • Age <65 and ≥ 65; • Charlson Comorbidity index (CCI) <3 and ≥3; • CRP <150 mg/L and ≥150 mg/L • Trial centre. Patients will be randomised in a 1 : 1 ratio into one of the two treatment arms. Randomisation through the eCRF will be available 24 hours every day. Blinding (masking) This is an open-label trial in which the participants and the study staff will be aware of the allocated intervention. Blinded pre-planned statistical analysis will be performed. Numbers to be randomised (sample size) The sample size is calculated to detect the difference of 3 VFDs at 28 days (primary efficacy endpoint) between the two treatment arms with a two-sided type I error of 0.05 and power of 80%. Based on data from a multi-centre randomised controlled trial in COVID-19 ARDS patients in Brazil and a multi-centre observational study from French and Belgian ICUs regarding moderate to severe ARDS related to COVID-19, investigators assumed a standard deviation of VFD at 28 days as 9. Using these assumptions, a total of 142 patients per treatment arm would be needed. After adjustment for a drop-out rate, 150 per treatment arm (300 patients per study) will be enrolled. Trial Status This is protocol version 1.1, 15.01.2021. The trial is due to start on 2 February 2021 and recruitment is expected to be completed by December 2021. Trial registration The study protocol was registered on EudraCT No.:2020-005887-70, and on December 11, 2020 on ClinicalTrials.gov (Title: Effect of Two Different Doses of Dexamethasone in Patients With ARDS and COVID-19 (REMED)) Identifier: NCT04663555 with a last update posted on February 1, 2021. Full protocol The full protocol (version 1.1) is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest of expediting dissemination of this material, the standard formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.
In the microbiological diagnosis of bloodstream infections (BSI), blood culture (BC) is considered the gold standard test despite its limitations such as low sensitivity and slow turnaround time. A new FDA‐cleared and CE‐marked platform utilizing magnetic resonance to detect amplified DNA of the six most common and/or problematic BSI pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli; referred to as ESKAPEc) is available and may shorten the time to diagnosis and potentially improve antimicrobial utilization. Whole blood samples from hospitalized patients with clinical signs of sepsis were analyzed using the T2Bacteria Panel (T2Biosystems) and compared to simultaneously collected BC. Discrepant results were evaluated based on clinical infection criteria, combining supporting culture results and the opinion of treating physicians. A total of 55 samples from 53 patients were evaluated. The sensitivity and specificity of the T2Bacteria panel was 94% (16 out of 17 detections of T2Bacteria‐targeted organisms) and 100%, respectively, with 36.4% (8 of 22) causes of BSI detected only by this method. The T2Bacteria Panel detected pathogens on average 55 hours faster than standard BC. In our study, 9 of 15 patients with positive T2Bacteria Panel results received early‐targeted antibiotic therapy and/or modification of antimicrobial treatment based on T2Bacteria Panel findings. Given the high reliability, faster time to detection, and easy workflow, the technique qualifies as a point‐of‐care testing approach.
Background Primary graft dysfunction (PGD) after lung transplantation (LuTx) contributes substantially to early postoperative morbidity. Both intraoperative transfusion of a large amount of blood products during the surgery and ischemia–reperfusion injury after allograft implantation play an important role in subsequent PGD development. Methods We have previously reported a randomized clinical trial of 67 patients where point of care (POC) targeted coagulopathy management and intraoperative administration of 5% albumin led to significant reduction of blood loss and blood product consumption during the lung transplantation surgery. A secondary analysis of the randomized clinical trial evaluating the effect of targeted coagulopathy management and intraoperative administration of 5% albumin on early lung allograft function after LuTx and 1-year survival was performed. Results Compared to the patients in the control (non-POC) group, those in study (POC) group showed significantly superior graft function, represented by the Horowitz index (at 72 h after transplantation 402.87 vs 308.03 with p < 0.001, difference between means: 94.84, 95% CI: 60.18–129.51). Furthermore, the maximum doses of norepinephrine administered during first 24 h were significantly lower in the POC group (0.193 vs 0.379 with p < 0.001, difference between the means: 0.186, 95% CI: 0.105–0.267). After dichotomization of PGD (0–1 vs 2–3), significant difference between the non-POC and POC group occurred only at time point 72, when PGD grade 2–3 developed in 25% (n = 9) and 3.2% (n = 1), respectively (p = 0.003). The difference in 1-year survival was not statistically significant (10 patients died in non-POC group vs. 4 patients died in POC group; p = 0.17). Conclusions Utilization of a POC targeted coagulopathy management combined with Albumin 5% as primary resuscitative fluid may improve early lung allograft function, provide better circulatory stability during the early post-operative period, and have potential to decrease the incidence of PGD without negative effect on 1-year survival. Trial registration This clinical trial was registered at ClinicalTrials.gov (NCT03598907).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.