The urinary tract functions in close proximity to the outside environment, yet must remain free of microbial colonization to avoid disease. The mechanisms for establishing an antimicrobial barrier in this area are not completely understood. Here, we describe the production and function of the cathelicidin antimicrobial peptides LL-37, its precursor hCAP-18 and its ortholog CRAMP in epithelial cells of human and mouse urinary tract, respectively. Bacterial contact with epithelial cells resulted in rapid production and secretion of the respective peptides, and in humans LL-37/hCAP-18 was released into urine. Epithelium-derived cathelicidin substantially contributed to the protection of the urinary tract against infection, as shown using CRAMP-deficient and neutrophil-depleted mice. In addition, clinical E. coli strains that were more resistant to LL-37 caused more severe urinary tract infections than did susceptible strains. Thus, cathelicidin seems to be a key factor in mucosal immunity of the urinary tract.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.