Mg2+ is an essential mineral with pleotropic impacts on cellular physiology and functions. It acts as a cofactor of several important enzymes, as a regulator of ion channels such as voltage-dependent Ca2+ channels and K+ channels and on Ca2+-binding proteins. In general, Mg2+ is considered as the main intracellular antagonist of Ca2+, which is an essential secondary messenger initiating or regulating a great number of cellular functions. This review examines the effects of Mg2+ on mitochondrial functions with a particular focus on energy metabolism, mitochondrial Ca2+ handling, and apoptosis.
Elevated concentration of homocysteine (Hcy) in the blood plasma, hyperhomocysteinemia (HHcy), has been implicated in various disorders, including cardiovascular and neurodegenerative diseases. Accumulating evidence indicates that pathophysiology of these diseases is linked with mitochondrial dysfunction. In this review, we discuss the current knowledge concerning the effects of HHcy on mitochondrial homeostasis, including energy metabolism, mitochondrial apoptotic pathway, and mitochondrial dynamics. The recent studies suggest that the interaction between Hcy and mitochondria is complex, and reactive oxygen species (ROS) are possible mediators of Hcy effects. We focus on mechanisms contributing to HHcy-associated oxidative stress, such as sources of ROS generation and alterations in antioxidant defense resulting from altered gene expression and post-translational modifications of proteins. Moreover, we discuss some recent findings suggesting that HHcy may have beneficial effects on mitochondrial ROS homeostasis and antioxidant defense. A better understanding of complex mechanisms through which Hcy affects mitochondrial functions could contribute to the development of more specific therapeutic strategies targeted at HHcy-associated disorders.
The MAPK/ERK/p38 are signal transduction pathways that couple intracellular responses to the external stimuli. Contrary to ERK protein which is part of the survival route, presence of p38 could have an impact on cell injury. Tolerance induced by ischemic preconditioning (IPC) is a phenomenon of tissue adaptation, which results in increased tolerance to lethal ischemia-reperfusion injury (IRI). Paper describes changes in MAPK protein pathways after brain IPC. Ischemia was induced by 4-vessels occlusion and rats were preconditioned by sub-lethal ischemia. Western blot and immunohistochemistry identified ERK/p38 proteins in injured areas. The highest level of the pERK was detected at 24 h in IPC groups. A contrary pattern of MAPK/p38 activation was observed in this group, where the lowest level of p38 was displayed at 24 h after ischemia. This suggests that the MAPK signal transduction might have a potential role in tissues response subjected to IRI and in the phenomenon of tolerance.
Simvastatin is a cholesterol-lowering agent whose functional significance and neuroprotective mechanism in ischemic brain injury is not yet solved. The purpose of this study is to evaluate the effect of simvastatin on ischemic brain injury. We examined the endoplasmic reticulum stress response (UPR/unfolded protein response), by measuring the mRNA and protein levels of specific genes such as ATF6, GRP78, and XBP1 after 15 min 4-VO ischemia and different times of reperfusion (1, 3, and 24 h). The results from the group of naïve ischemic rats were compared with results from the group of pre-treated animals with simvastatin. The results of the experiments showed significant increase in all genes at the mRNA level in ischemic phase (about 43% for XBP1, 58% for GRP78, and 39% for ATF6 more than control). The protein level of XBP1 was decreased in pre-treated animals at ischemic phase and first hour of reperfusion (about 15% less), and did not reach control levels. The protein levels of GRP78 were maximal at third hour of reperfusion in statin group with a small decrease at 24 h of reperfusion in both groups. The levels of ATF6 mRNA in statin-treated animals was higher in comparison to non-statin animals at the ischemic phase and the third hour of reperfusion (about 35% higher), which was also translated into the higher protein level. This could indicate that one of the main proteins targeted to enhance neuroprotective effect to ER during the first two hours of reperfusion was ATF6 protein, the levels of which were 60% higher than in non-treated animals. These data suggest that simvastatin, in addition to the proposed neuroprotective effect, exerts a neuroprotective role in the attenuation of ER stress response after acute ischemic/reperfusion insult.
Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disorder that results in massive hippocampal and neocortical neuronal loss leading to dementia and eventual death. The exact cause of Alzheimer's disease is not fully explored, although a number of risk factors have been recognized, including high plasma concentration of homocysteine (Hcy). Hyperhomocysteinemia (hHcy) is considered a strong, independent risk factor for stroke and dementia. However, the molecular background underlying these mechanisms linked with hHcy and ischemic stroke is not fully understood. Paper describes rat model of global forebrain ischemia combined with the experimentally induced hHcy. Global ischemia-reperfusion injury (IRI) was developed by 4-vessels occlusion lasting for 15 min followed by reperfusion period of 72 h. hHcy was induced by subcutaneous injection of 0.45 µmol/g of Hcy in duration of 14 days. The results showed remarkable neural cell death induced by hHcy in the brain cortex and neurodegeneration is further aggravated by global IRI. We demonstrated degeneration of cortical neurons, alterations in number and morphology of tissue astrocytes and dysregulation of oxidative balance with increased membrane protein oxidation. Complementary to, an immunohistochemical analysis of tau protein and β-amyloid peptide showed that combination of hHcy with the IRI might lead to the progression of AD-like pathological features. Conclusively, these findings suggest that combination of risk factor hHcy with IRI aggravates neurodegeneration processes and leads to development of AD-like pathology in cerebral cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.