Despite limited formal evidence, panellists deemed FDG-PET useful in the early and differential diagnosis of the main neurodegenerative disorders, and semi-automated assessment helpful to assist visual reading. These decisions are proposed as interim recommendations.
Background: Dementia with Lewy bodies (DLB) is a common form of dementia. The presence of Alzheimer's disease (AD) pathology modifies the clinical features of DLB, making it harder to distinguish DLB from AD clinically during life. Clinical diagnostic criteria for DLB applied at presentation can fail to identify up to 50% of cases. Our aim was to determine, in a series of patients with dementia in whom autopsy confirmation of diagnosis was available, whether functional imaging of the nigrostriatal pathway improves the accuracy of diagnosis compared with diagnosis by means of clinical criteria alone. Methods: A single photon emission computed tomography (SPECT) scan was carried out with a dopaminergic presynaptic ligand [123 I]-2beta-carbometoxy-3beta-(4-iodophenyl)-N-(3-fluoropropyl) nortropane (FP-CIT; ioflupane) on a group of patients with a clinical diagnosis of DLB or other dementia. An abnormal scan was defined as one in which right and left posterior putamen binding, measured semiquantitatively, was more than 2 SDs below the mean of the controls. Results: Over a 10 year period it was possible to collect 20 patients who had been followed from the time of first assessment and time of scan through to death and subsequent detailed neuropathological autopsy. Eight patients fulfilled neuropathological diagnostic criteria for DLB. Nine patients had AD, mostly with coexisting cerebrovascular disease. Three patients had other diagnoses. The sensitivity of an initial clinical diagnosis of DLB was 75% and specificity was 42%. The sensitivity of the FP-CIT scan for the diagnosis of DLB was 88% and specificity was 100%. Conclusion: FP-CIT SPECT scans substantially enhanced the accuracy of diagnosis of DLB by comparison with clinical criteria alone.
Background: Dementia with Lewy bodies (DLB) is one of the main differential diagnoses of Alzheimer's disease (AD). Key pathological features of patients with DLB are not only the presence of cerebral cortical neuronal loss, with Lewy bodies in surviving neurones, but also loss of nigrostriatal dopaminergic neurones, similar to that of Parkinson's disease (PD). In DLB there is 40-70% loss of striatal dopamine. Objective: To determine if detection of this dopaminergic degeneration can help to distinguish DLB from AD during life. Methods: The integrity of the nigrostriatal metabolism in 27 patients with DLB, 17 with AD, 19 drug naive patients with PD, and 16 controls was assessed using a dopaminergic presynaptic ligand, 123 Ilabelled 2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl)nortropane (FP-CIT), and single photon emission tomography (SPET). A SPET scan was carried out with a single slice, brain dedicated tomograph (SME 810) 3.5 hours after intravenous injection of 185 MBq FP-CIT. With occipital cortex used as a radioactivity uptake reference, ratios for the caudate nucleus and the anterior and posterior putamen of both hemispheres were calculated. All scans were also rated by a simple visual method. Results: Both DLB and PD patients had significantly lower uptake of radioactivity than patients with AD (p<0.001) and controls (p<0.001) in the caudate nucleus and the anterior and posterior putamen. Conclusion: FP-CIT SPET provides a means of distinguishing DLB from AD during life.
Objective:To conduct a validation study of 123I-N-fluoropropyl-2b-carbomethoxy-3b-(4-iodophenyl) nortropane (123I-FP-CIT) SPECT dopaminergic imaging in the clinical diagnosis of dementia with Lewy bodies (DLB) with autopsy as the gold standard.Methods:Patients >60 years of age with dementia who had undergone 123I-FP-CIT imaging in research studies and who had donated their brain tissue to the Newcastle Brain Tissue Resource were included. All had structured clinical research assessments, and clinical diagnoses were applied by consensus panels using international diagnostic criteria. All underwent 123I-FP-CIT imaging at baseline, and scans were rated as normal or abnormal by blinded raters. Patients were reviewed in prospective studies and after death underwent detailed autopsy assessment, and neuropathologic diagnoses were applied with the use of standard international criteria.Results:Fifty-five patients (33 with DLB and 22 with Alzheimer disease) were included. Against autopsy diagnosis, 123I-FP-CIT had a balanced diagnostic accuracy of 86% (sensitivity 80%, specificity 92%) compared with clinical diagnosis, which had an accuracy of 79% (sensitivity 87%, specificity 72%). Among patients with DLB, 10% (3 patients) met pathologic criteria for Lewy body disease but had normal 123I-FP-CIT imaging.Conclusions:This large autopsy analysis of 123I-FP-CIT imaging in dementia demonstrates that it is a valid and accurate biomarker for DLB, and the high specificity compared with clinical diagnosis (20% higher) is clinically important. The results need to be replicated with patients recruited from a wider range of settings, including movement disorder clinics and general practice. While an abnormal 123I-FP-CIT scan strongly supports Lewy body disease, a normal scan does not exclude DLB with minimal brainstem involvement.Classification of evidence:This study provides Class I evidence that 123I-FP-CIT dopaminergic neuroimaging accurately identifies patients with DLB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.