Language comprehension recruits an extended set of regions in the human brain. Is syntactic processing localized to a particular region or regions within this system, or is it distributed across the entire ensemble of brain regions that support high-level linguistic processing? Evidence from aphasic patients is more consistent with the latter possibility: damage to many different language regions and to white-matter tracts connecting them has been shown to lead to similar syntactic comprehension deficits. However, brain imaging investigations of syntactic processing continue to focus on particular regions within the language system, often parts of Broca’s area and regions in the posterior temporal cortex. We hypothesized that, whereas the entire language system is in fact sensitive to syntactic complexity, the effects in some regions may be difficult to detect because of the overall lower response to language stimuli. Using an individual-subjects approach to localizing the language system, shown in prior work to be more sensitive than traditional group analyses, we indeed find responses to syntactic complexity throughout this system, consistent with the findings from the neuropsychological patient literature. We speculate that such distributed nature of syntactic processing could perhaps imply that syntax is inseparable from other aspects of language comprehension (e.g., lexico-semantic processing), in line with current linguistic and psycholinguistic theories and evidence. Neuroimaging investigations of syntactic processing thus need to expand their scope to include the entire system of high-level language processing regions in order to fully understand how syntax is instantiated in the human brain.
In the cognitive domain, enormous variation in methodological approach prompts questions about the generalizability of behavioral findings obtained from studies of transcranial direct current stimulation (tDCS). To determine the impact of common variations in approach, we systematically manipulated two key stimulation parameters—current polarity and intensity—and assessed their impact on a task of inhibitory control (the Eriksen Flanker). Ninety participants were randomly assigned to one of nine experimental groups: three stimulation conditions (anode, sham, cathode) crossed with three intensity levels (1.0, 1.5, 2.0 mA). As participants performed the Flanker task, stimulation was applied over left dorsolateral prefrontal cortex (DLPFC; electrode montage: F3-RSO). The behavioral impact of these manipulations was examined using mixed effects linear regression. Results indicate a significant effect of stimulation condition (current polarity) on the magnitude of the interference effect during the Flanker; however, this effect was specific to the comparison between anodal and sham stimulation. Inhibitory control was therefore improved by anodal stimulation over the DLPFC. In the present experimental context, no reliable effect of stimulation intensity was observed, and we found no evidence that inhibitory control was impeded by cathodal stimulation. Continued exploration of the stimulation parameter space, particularly with more robustly powered sample sizes, is essential to facilitating cross-study comparison and ultimately working toward a reliable model of tDCS effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.