The toxic effects of heavy metals on organisms are well established. However, their specific action at the cellular level in different tissues is mostly unknown. We have used the housefly, Musca domestica, as a model organism to study the toxicity of four heavy metals: copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb). These have been fed to larvae at low and high, semi-lethal concentrations, and their accumulation in the head, thorax, and abdomen was subsequently measured in adult flies. In addition, their impact on the cellular concentration of several elements important for cell metabolism-sodium (Na+), magnesium (Mg++), phosphorous (P), sulphur (S), chloride (Cl-) and potassium (K+)-were measured in neural cells, muscle fibers, and midgut epithelial cells. Our study showed that the heavy metals accumulate mainly in the abdomen, in which the concentrations of two of the xenobiotic metals, Cd and Pb, were 213 and 23 times more concentrated, respectively, than in controls. All the heavy metals affected the cellular concentration of light elements in all cell types, but the changes observed were dependent on tissue type and were specific for each heavy metal, and its concentration.
GRZYWACZ B., WARCHA£OWSKA-LIWA E, BANACH Z., PYZA E. 2012. Genetic variability and changes of elemental concentrations in cells of Tetrix tenuicornis (Orthoptera: Tetrigidae) from polluted and unpolluted areas. Folia biologica (Kraków) $: 17-25.Genetic variability between populations of the orthopteran insect Tetrix tenuicornis, collected from six locations in Poland, was assayed by using the random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) method. The results show that insects in a population from metal polluted areas in Boles³aw have reduced genetic variability in contrast to five other populations located in unpolluted areas. The insects from polluted sites also showed significant changes in elemental concentrations in nerve and muscle cells, measured by X-ray spectroscopy, when compared to insects of the same species collected from unpolluted sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.