Infants’ limb movements evolve from disorganized to more selectively coordinated during the first year of life as they learn to navigate and interact with an ever-changing environment more efficiently. However, how these coordination patterns change during the first year of life and across different contexts is unknown. Here, we used wearable motion trackers to study the developmental changes in the complexity of limb movements (arms and legs) at 4, 6, 9 and 12 months of age in two different tasks: rhythmic rattle-shaking and free play. We applied Multidimensional Recurrence Quantification Analysis (MdRQA) to capture the nonlinear changes in infants’ limb complexity. We show that the MdRQA parameters (entropy, recurrence rate and mean line) are task-dependent only at 9 and 12 months of age, with higher values in rattle-shaking than free play. Since rattle-shaking elicits more stable and repetitive limb movements than the free exploration of multiple objects, we interpret our data as reflecting an increase in infants’ motor control that allows for stable body positioning and easier execution of limb movements. Infants’ motor system becomes more stable and flexible with age, allowing for flexible adaptation of behaviors to task demands.
ILS conducted main statistical analyses, contributed to interpreting the results, wrote the first draft and edited subsequent versions of the manuscript.DLP contributed to the pre-processing of eye-tracking data and commented on earlier versions of the manuscript.ZL contributed to the interpretation of the results and editing the manuscript.MS conducted statistical analyses and contributed to the coordination of the study.AR conducted statistical analyses and contributed to the coordination of the study.
CHANGES IN SELECTIVE ATTENTION TO THE MOUTH -Manuscript accepted in Infancy
2AMK managed and conducted the data collection.PT conceived and designed the study, oversaw its execution, secured the funding, conducted main statistical analyses, contributed to the coordination of the study, the interpretation of the results and editing subsequent versions of the manuscript.
From early on, infants produce a variety of rhythmic behaviors—an ability that likely supports later social communication. However, it is unclear, how this rhythmic motor production changes with age. Here, we investigated the coupling between infants' arm movements across the first year of life in a social context of a rattle-shaking play with their mothers. Through longitudinal measurements at 4, 6, 9, and 12 months of age using wearable motion trackers placed on infants' arms, we show that infants (N = 40) are similarly motivated to attempt rattle-shaking across the first year of life. However, with age, they make more rattling movements with an increased frequency. Their left and right arm movements become more coupled during rattle-shaking, as shown by an increase in wavelet coherence. Infants produced more rattling movements when they were rattling alone than when their mothers were rattling or singing simultaneously. There were no differences between infants' individual and social rattling in between-arms coherence. Our results may help to understand rhythmic arm movements as precursors of motor social coordination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.