Scope: Dietary fiber (DF) induces changes in gut microbiota function and thus modulates the gut environment. How this modulation is associated with metabolic pathways related to the gut is largely unclear. This study aims to investigate differences in metabolites produced by the gut microbiota and their interactions with host metabolism in response to supplementation with two bran fibers. Methods and Results: Male C57BL/6N mice are fed a western diet (WD) for 17 weeks. Two groups of mice received a diet enriched with 10% w/w of either oat or rye bran, with each bran containing 50% DF. Microbial metabolites are assessed by measuring cecal short-chain fatty acids (SCFAs), ileal and fecal bile acids (BAs), and the expression of genes related to tryptophan (TRP) metabolism. Both brans lowered body weight gain and ameliorated WD-induced impaired glucose responses, hepatic inflammation, liver enzymes, and gut integrity markers associated with SCFA production, altered BA metabolism, and TRP diversion from the serotonin synthesis pathway to microbial indole production. Conclusions: Both brans develop a favorable environment in the gut by altering the composition of microbes and modulating produced metabolites. Changes induced in the gut environment by a fiber-enriched diet may explain the amelioration of metabolic disturbances related to WD.
Scope
This study takes a novel approach to investigate the anti‐inflammatory and antioxidant effects of prebiotic oat beta‐glucan (OAT) and the probiotic Lactobacillus rhamnosus GG (LGG) against high‐fat diets (HFD) by examining the fatty acid profiles in the gut‐liver‐brain axis.
Method and Results
HFD‐fed C57BL/6N mice are supplemented with OAT and/or LGG for 17 weeks. Thereafter, mass spectrometry‐based targeted lipidomics is employed to quantify short‐chain fatty acids (SCFA), polyunsaturated fatty acids (PUFA), and oxidized PUFA products in the tissues. Acetate levels are suppressed by HFD in all tissues but reversed in the brain and liver by supplementation with LGG, OAT, or LGG + OAT, and in cecum content by LGG. The n‐6/n‐3 polyunsaturated fatty acid (PUFA) ratio is elevated by HFD in all tissues but is lowered by LGG and OAT in the cecum and the brain, and by LGG + OAT in the brain, suggesting the anti‐inflammatory property of LGG and OAT. LGG and OAT synergistically, but not individually attenuate the increase in non‐enzymatic oxidized products, indicating their synbiotic antioxidant property.
Conclusion
The regulation of the fatty acid profiles by LGG and OAT, although incomplete, but demonstrates their anti‐inflammatory and antioxidant potentials in the gut‐liver‐brain axis against HFD.
Emerging evidence links dietary fiber with altered gut microbiota composition and bile acid signaling in maintaining metabolic health. Yeast β-glucan (Y-BG) is a dietary supplement known for its immunomodulatory effect, yet its impact on the gut microbiota and bile acid composition remains unclear. This study investigated whether dietary forms of Y-BG modulate these gut-derived signals. We performed 4-week dietary supplementation in healthy mice to evaluate effects of different fiber composition (soluble vs particulate Y-BG) and dose (0.1 vs. 2%). We found that 2% particulate Y-BG induced robust gut microbiota community shifts with elevated liver Cyp7a1 mRNA abundance and bile acid synthesis. These diet-induced responses were notably different when compared to the prebiotic inulin, and included a marked reduction in fecal Bilophila abundance which we demonstrated as translatable to obesity in population-scale American Gut and TwinsUK clinical cohorts. This prompted us to test whether 2% Y-BG maintained metabolic health in mice fed 60% HFD over 13 weeks. Y-BG consistently altered the gut microbiota composition and reduced Bilophila abundance, with trends observed in improvement of metabolic phenotype. Notably, Y-BG improved insulin sensitization and this was associated with enhanced ileal Glpr1r mRNA accumulation and reduced Bilophila abundance. Collectively, our results demonstrate that Y-BG modulates gut microbiota community composition and bile acid signaling, but the dietary regime needs to be optimized to facilitate clinical improvement in metabolic phenotype in an aggressive high-fat diet animal model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.