Carbon nanotubes (CNTs) are materials with exceptional electrical, thermal, mechanical, and optical properties. Ever since it was demonstrated that they also possess interesting thermoelectric properties, they have been considered a promising solution for thermal energy harvesting. In this study, we present a simple method to enhance their performance. For this purpose, thin films obtained from high-quality single-walled CNTs (SWCNTs) were doped with a spectrum of inorganic and organic halide compounds. We studied how incorporating various halide species affects the electrical conductivity, the Seebeck coefficient, and the Power Factor. Since thermoelectric devices operate under non-ambient conditions, we also evaluated these materials' performance at elevated temperatures. Our research shows that appropriate dopant selection can result in almost fivefold improvement to the Power Factor compared to the pristine material. We also demonstrate that the chemical potential of the starting CNT network determines its properties, which is important for deciphering the true impact of chemical and physical functionalization of such ensembles.
The recent rapid development of transparent electronics, notably displays and control circuits, requires the development of highly transparent energy storage devices, such as supercapacitors. The devices reported to date utilize carbon-based electrodes for high performance, however at the cost of their low transparency around 50%, insufficient for real transparent devices. To overcome this obstacle, in this communication highly transparent supercapacitors were fabricated based on ZnO/MnO nanostructured electrodes. ZnO served as an intrinsically transparent skeleton for increasing the electrode surface, while MnO nanoparticles were applied for high capacitance. Two MnO synthesis routes were followed, based on the reaction of KMnO with Mn(Ac) and PAH, leading to the synthesis of β-MnO with minority α-MnO nanoparticles and amorphous MnO with embedded β-MnO, respectively. The devices based on such electrodes showed high capacitances of 2.6 mF cm and 1.6 mF cm, respectively, at a scan rate of 1 mV s and capacitances of 104 μF cm and 204 μF cm at a very high rate of 1 V s, not studied for transparent supercapacitors previously. Additionally, the Mn(Ac) devices exhibited very high transparencies of 86% vs. air, far superior to other transparent energy storage devices reported with similar charge storage properties. This high device performance was achieved with a non-acidic LiCl gel electrolyte, reducing corrosion and handling risks associated with conventional highly concentrated acidic electrolytes, enabling applications in safe, wearable, transparent devices.
Thin layers of transition metal dichalcogenides have been intensively studied over the last few years due to novel physical phenomena and potential applications. One of the biggest problems in laboratory...
The lattice mismatch between interesting 2D materials and commonly available 3D substrates is one of the obstacles in the epitaxial growth of monolithic 2D/3D heterostructures, but a number of 2D materials have not yet been considered for epitaxy. Here, we present the first molecular beam epitaxy growth of a NiTe2 2D transition-metal dichalcogenide. Importantly, the growth is realized on a nearly lattice-matched GaAs(111)B substrate. Structural properties of the grown layers are investigated by electron diffraction, X-ray diffraction, and scanning tunneling microscopy. Surface coverage and atomic-scale order are evidenced by images obtained with atomic force, scanning electron, and transmission electron microscopy. Basic transport properties were measured confirming that the NiTe2 layers are metallic, with a Hall concentration of 1020 to 1023 cm–3, depending on the growth conditions.
Thin crystalline layers of TaAs Weyl semimetal are grown by molecular beam epitaxy on GaAs(001) substrates. The (001) planes of the tetragonal TaAs lattice are parallel to the GaAs(001) substrate, but the corresponding in-plane crystallographic directions of the substrate and the layer are rotated by 45°. In spite of a substantial lattice mismatch (about 19%) between GaAs(001) substrate and TaAs epilayer no misfit dislocations are observed at the GaAs(001)/TaAs(001) interface. Only stacking fault defects in TaAs are detected with transmission electron microscopy. Thorough X-ray diffraction measurements and analysis of the in-situ reflection high energy electron diffraction images indicates that TaAs layers are fully relaxed already at the initial deposition stage. Atomic force microscopy imaging reveals the columnar structure of the layers, with lateral (parallel to the layer surface) columns about 20 nm wide and 200 nm long. Both X-ray diffraction and transmission electron microscopy measurements indicate that the columns share the same orientation and crystalline structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.