, AND HAROLD S. GINSBERG. Characterization of a tumor-like antigen in type 12 and type 18 adenovirus-infected cells. J. Bacteriol. 90:120-125. 1965.-An antigen that reacts with antibody from type 12 adenovirus tumor-bearing hamsters was identified in extracts of KB cells infected with type 12 or 18 adenovirus. In contrast, viral structural proteins separated by chromatography on diethylaminoethyl-cellulose did not react with the sera from tumorous hamsters. The tumorlike (T) antigen in infected cells was found to be smaller than the viral structural antigens and, therefore, could be separated from them by centrifugation in a linear sucrose gradient. Investigation of the production of the T antigen in virus-infected cells further distinguished it from viral structural proteins by the following properties: (i) the T antigen was first detected 3 to 4 hr after infection, whereas viral antigens were synthesized 17 to 20 hr after infection; and (ii) the T antigen was produced when deoxyribonucleic acid (DNA) biosynthesis was inhibited by 5-fluorodeoxyuridine (10-6 M), but viral proteins were not synthesized in the absence of viral DNA replication.
An adenovirus type 2 (Ad2) DNA-binding protein was purified by sequential DNA-cellulose, Sephadex G-200, and DEAE-Sephadex chromatography, with a yield of 120 ,ug of binding protein (95 to 99% homogeneity) starting with 2 x 109 infected cells. By omitting the Sephadex G-200 step, 400 to 600 ,ug of 95% pure binding protein was obtained. To obtain high yields of highly purified binding protein, it was necessary to include deoxycholate and Nonidet P-40 at selected stages during the preparation. The highly purified binding protein appeared to have retained its native state as indicated by: (i) binding to single-stranded but not native Ad2 DNA, (ii) almost complete precipitation by immunoglobulin G from hamsters immunized by extracts of tumors induced by Ad2-simian virus 40 hybrid viruses, and (iii) identical sedimentation coefficient with binding protein obtained from DNA-cellulose chromatography only. Zonal centrifugation in sucrose gradients and gel filtration revealed that purified binding protein has a sedimentation coefficient of 3.AS and a Stokes radius of 5.2 nm. Based on these two values, a molecular weight of 73,000 was calculated, in agreement with the estimate from sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A frictional ratio of 1.88 was calculated, suggesting that the Ad2 DNA-binding protein does not have a typical globular protein structure.
High-titer monospecific antiserum against highly purified adenovirus 2 (Ad2) single-stranded DNA binding protein (DBP) was used to study, by indirect immunofluorescence (IF), the synthesis of DBP in Ad2-infected human cells and adenovirus-transformed rat, hamster, and human cell lines. In infected cells the synthesis of DBP was first detected in the cytoplasm at 2 to 4 h postinfection and reached a maximum intensity at 6 h postinfection. At this time DBP began to accumulate in the nucleus, where it reached maximum intensity at about 14 h postinfection. The cytoplasmic IF was diffuse, whereas nuclear IF appeared as dots that coalesced into large globules as infection progressed. In cells treated with 1-,3-D-arabinofuranosylcytosine to inhibit viral DNA synthesis, strong nuclear IF was observed in the form of dots, but the large fluorescent globules were not observed. The Ad2 (oncogenic group C) anti-DBP serum reacted very strongly by IF with Ad5 (group C)-infected, to a lesser extent with Ad7 and Adli (group B)-infected, and weakly with Ad12 and Adi8 (group A)-infected KB cells (treated with 1-,8-D-arabinofuranosylcytosine). These results may indicate that Ad2 DBP is closely related immunologically to DBPs induced early after infection by adenovirus serotypes in oncogenic group C, moderately related to DBPs of serotypes in oncogenic group B, and perhaps distantly related to DBPs of serotypes in oncogenic group A. The following adenovirus-transformed cell lines were examined for DBP synthesis by IF with the Ad2 anti-DBP serum: six rat cell lines (T2C4, F17, 8662, 8638, 8617, and F161) transformed by Ad2 virus, three hamster cell lines transformed by Ad2 virus (Ad2HT1) and Ad2-simian virus 40 hybrid virus (ND1HK1 and ND4HK4), and one rat (5RK) and one human (293-31) cell line transformed by transfection with Ad5 DNA. T2C4 and 8662 appeared weakly positive, whereas Ad2HT1 and ND4HK1 were strongly positive. The other transformed cell lines did not produce DBP detectable by IF. Thus, some but not all transformed cell lines produce DBP, which indicates that DBP is not required for maintenance of cell transformation and that transformed cells can express "nontransforming" viral genes as protein.Human adenoviruses are oncogenic DNA viruses that mature in the nucleus of permissive human cells and transform semipermissive or nonpermissive cell types with low frequency (reviewed in reference 31; W. S. M. Wold, M. Green, and W. Buttner, in D. P. Nayak [ed.], Molecular Biology of Animal Viruses, in press). There are at least 31 human adenovirus serotypes; some serotypes fall into three welldefined oncogenic groups: group A (adenovirus 12
The adenovirus type 2-coded single-stranded DNA binding protein (DBP) was shown to be a phosphoprotein and to exist in at least two forms that differ in mobility by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After a 30-min pulse with [35S]methionine or 32PO4, 35Sor 32P-labeled DBP had a nominal molecular weight of 74,000, whereas after a 30-min label followed by a 20-h chase, 35S-and 32P-labeled DBP had a nominal molecular weight of 77,000. Both large and small forms of 35S-and 32P-labeled DBP bound to single-stranded DNA-cellulose columns and were eluted by 0.4 to 0.6 M NaCl; both forms also were immunoprecipitated by antiserum against adenovirus type 1-simian virus 40-induced tumor cells (this antiserum contains antibodies against DBP) and by monospecific antiserum against 95 to 99% purified DBP. With highly purified 32P-DBP labeled 7 to 10 h postinfection, it was shown that the 32p radioactivity was firmly associated with protein material (i.e., not contaminating nucleic acids or phospholipids) and had properties expected of a phosphoester of an amino acid; paper electrophoresis of acid hydrolysates of this preparation identified phosphoserine but not phosphothreonine. Phosphoserine but not phosphothreonine was also identified in acid hydrolysates of another preparation of 32P-DBP labeled for 30 min, chased for 20 h, and then immunoprecipitated by adenovirus type 1-simian virus 40 antiserum. Human adenovirus 2 (Ad2) is an oncogenic DNA virus that replicates in the nucleus of permissive human cells (reviewed in reference 18 and in W. S. M. Wold, M. Green, and W. Buttner, In D. P. Nayak, ed., Molecular Biology of Animal Viruses, in press). The productive infection proceeds in an "early" stage, when 23 to 32% of the asymmetric genome is expressed as mRNA, and in a "late" stage, which follows the initiation of viral DNA replication at 6 to 7 h postinfection (p.i.). Virus-coded or-induced proteins synthesized early after infection probably are involved in viral DNA replication,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.