HIV infection is associated with the progressive loss of CD4(+) T cells through their destruction or decreased production. A central, yet unresolved issue of HIV disease is the mechanism for this loss, and in particular whether HIV-specific CD4(+) T cells are preferentially affected. Here we show that HIV-specific memory CD4(+) T cells in infected individuals contain more HIV viral DNA than other memory CD4(+) T cells, at all stages of HIV disease. Additionally, following viral rebound during interruption of antiretroviral therapy, the frequency of HIV viral DNA in the HIV-specific pool of memory CD4(+) T cells increases to a greater extent than in memory CD4(+) T cells of other specificities. These findings show that HIV-specific CD4(+) T cells are preferentially infected by HIV in vivo. This provides a potential mechanism to explain the loss of HIV-specific CD4(+) T-cell responses, and consequently the loss of immunological control of HIV replication. Furthermore, the phenomenon of HIV specifically infecting the very cells that respond to it adds a cautionary note to the practice of structured therapy interruption.
CD4+ T cell responses are associated with disease control in chronic viral infections. We analyzed human immunodeficiency virus (HIV)-specific responses in ten aviremic and eight viremic patients treated during primary HIV-1 infection and for up to 6 yr thereafter. Using a highly sensitive 5-(and-6)-carboxyfluorescein diacetate-succinimidyl ester–based proliferation assay, we observed that proliferative Gag and Nef peptide-specific CD4+ T cell responses were 30-fold higher in the aviremic patients. Two subsets of HIV-specific memory CD4+ T cells were identified in aviremic patients, CD45RA− CCR7+ central memory cells (Tcm) producing exclusively interleukin (IL)-2, and CD45RA− CCR7− effector memory cells (Tem) that produced both IL-2 and interferon (IFN)-γ. In contrast, in viremic, therapy-failing patients, we found significant frequencies of Tem that unexpectedly produced exclusively IFN-γ. Longitudinal analysis of HIV epitope–specific CD4+ T cells revealed that only cells that had the capacity to produce IL-2 persisted as long-term memory cells. In viremic patients the presence of IFN-γ–producing cells was restricted to periods of elevated viremia. These findings suggest that long-term CD4+ T cell memory depends on IL-2–producing CD4+ T cells and that IFN-γ only–producing cells are short lived. Our data favor a model whereby competent HIV-specific Tcm continuously arise in small numbers but under persistent antigenemia are rapidly induced to differentiate into IFN-γ only–producing cells that lack self-renewal capacity.
Upon transmission to a new host, HIV targets CCR5+ CD4+ effector memory T cells, resulting in acute, massive depletion of these cells from mucosal effector sites. This depletion does not initially compromise the regenerative capacity of the immune system because naive and most central memory T cells are spared. Here, we discuss evidence suggesting that frequent activation of these spared cells during the chronic phase of HIV infection supplies mucosal tissues with short-lived CCR5+ CD4+ effector cells that prevent life-threatening infections. This immune activation also facilitates continued viral replication, but infection and killing of target T cells by HIV are selective and the impact on effector-cell lifespan is limited. We propose, however, that persistent activation progressively disrupts the functional organization of the immune system, reducing its regenerative capacity and facilitating viral evolution that leads to loss of the exquisite target cell-sparing selectivity of viral replication, ultimately resulting in AIDS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.