Abstract. Motivated by real world networks and use of algorithms based on random walks on these networks we study the simple random walks on dynamic undirected graphs with fixed underlying vertex set, i.e., graphs which are modified by inserting or deleting edges at every step of the walk. We are interested in the expected time needed to visit all the vertices of such a dynamic graph, the cover time, under the assumption that the graph is being modified by an oblivious adversary. It is well known that on connected static undirected graphs the cover time is polynomial in the size of the graph. On the contrary and somewhat counter-intuitively, we show that there are adversary strategies which force the expected cover time of a simple random walk on connected dynamic graphs to be exponential. We relate this result to the cover time of static directed graphs. In addition we provide a simple strategy, the lazy random walk, that guarantees polynomial cover time regardless of the changes made by the adversary.
We pose a new and intriguing question motivated by distributed computing regarding random walks on graphs: How long does it take for several independent random walks, starting from the same vertex, to cover an entire graph? We study the cover time -the expected time required to visit every node in a graph at least once -and we show that for a large collection of interesting graphs, running many random walks in parallel yields a speed-up in the cover time that is linear in the number of parallel walks. We demonstrate that an exponential speed-up is sometimes possible, but that some natural graphs allow only a logarithmic speed-up. A problem related to ours (in which the walks start from some probablistic distribution on vertices) was previously studied in the context of space efficient algorithms for undirected s-t-connectivity and our results yield, in certain cases, an improvement upon some of the earlier bounds. *
Abstract. We consider two types of buffering policies that are used in network switches supporting Quality of Service (QoS). In the FIFO type, packets must be transmitted in the order in which they arrive; the constraint in this case is the limited buffer space. In the bounded-delay type, each packet has a maximum delay time by which it must be transmitted, or otherwise it is lost. We study the case of overloads resulting in packet loss. In our model, each packet has an intrinsic value, and the goal is to maximize the total value of transmitted packets.Our main contribution is a thorough investigation of some natural greedy algorithms in various models. For the FIFO model we prove tight bounds on the competitive ratio of the greedy algorithm that discards packets with the lowest value when an overflow occurs. We also prove that the greedy algorithm that drops the earliest packets among all low-value packets is the best greedy algorithm. This algorithm can be as much as 1.5 times better than the tail-drop greedy policy, which drops the latest lowest-value packets.In the bounded-delay model we show that the competitive ratio of any on-line algorithm for a uniform bounded-delay buffer is bounded away from 1, independent of the delay size. We analyze the greedy algorithm in the general case and in three special cases: delay bound 2, link bandwidth 1, and only two possible packet values.Finally, we consider the off-line scenario. We give efficient optimal algorithms and study the relation between the bounded-delay and FIFO models in this case.
Wattenhofer et al.[WW04] derive a complicated distributed algorithm to compute a weighted matching of an arbitrary weighted graph, that is at most a factor 5 away from the maximum weighted matching of that graph. We show that a variant of the obvious sequential greedy algorithm [Pre99], that computes a weighted matching at most a factor 2 away from the maximum, is easily distributed. This yields the best known distributed approximation algorithm for this problem so far.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.