In today’s data networks, the main protocol used to ensure reliable communications is the transmission control protocol (TCP). The TCP performance is largely determined by the used congestion control (CC) algorithm. TCP CC algorithms have evolved over the past three decades and a large number of CC algorithm variations have been developed to accommodate various network environments. The fifth-generation (5G) mobile network presents a new challenge for the implementation of the TCP CC mechanism, since networks will operate in environments with huge user device density and vast traffic flows. In contrast to the pre-5G networks that operate in the sub-6 GHz bands, the implementation of TCP CC algorithms in 5G mmWave communications will be further compromised with high variations in channel quality and susceptibility to blockages due to high penetration losses and atmospheric absorptions. These challenges will be particularly present in environments such as sensor networks and Internet of Things (IoT) applications. To alleviate these challenges, this paper provides an overview of the most popular single-flow and multy-flow TCP CC algorithms used in pre-5G networks. The related work on the previous examinations of TCP CC algorithm performance in 5G networks is further presented. A possible implementation of TCP CC algorithms is thoroughly analysed with respect to the specificities of 5G networks, such as the usage of high frequencies in the mmWave spectrum, the frequent horizontal and vertical handovers, the implementation of the 5G core network, the usage of beamforming and data buffering, the exploitation of edge computing, and the constantly transmitted always-on signals. Moreover, the capabilities of machine learning technique implementations for the improvement of TCPs CC performance have been presented last, with a discussion on future research opportunities that can contribute to the improvement of TCP CC implementation in 5G networks. This survey paper can serve as the basis for the development of novel solutions that will ensure the reliable implementation of TCP CC in different usage scenarios of 5G networks.
As the rapid growth of mobile users and Internet-of-Everything devices will continue in the upcoming decade, more and more network capacity will be needed to accommodate such a constant increase in data volumes (DVs). To satisfy such a vast DV increase, the implementation of the fifth-generation (5G) and future sixth-generation (6G) mobile networks will be based on heterogeneous networks (HetNets) composed of macro base stations (BSs) dedicated to ensuring basic signal coverage and capacity, and small BSs dedicated to satisfying capacity for increased DVs at locations of traffic hotspots. An approach that can accommodate constantly increasing DVs is based on adding additional capacity in the network through the deployment of new BSs as DV increases. Such an approach represents an implementation challenge to mobile network operators (MNOs), which is reflected in the increased power consumption of the radio access part of the mobile network and degradation of network energy efficiency (EE). In this study, the impact of the expected increase of DVs through the 2020s on the EE of the 5G radio access network (RAN) was analyzed by using standardized data and coverage EE metrics. An analysis was performed for five different macro and small 5G BS implementation and operation scenarios and for rural, urban, dense-urban and indoor-hotspot device density classes (areas). The results of analyses reveal a strong influence of increasing DV trends on standardized data and coverage EE metrics of 5G HetNets. For every device density class characterized with increased DVs, we here elaborate on the process of achieving the best and worse combination of data and coverage EE metrics for each of the analyzed 5G BSs deployment and operation approaches. This elaboration is further extended on the analyses of the impact of 5G RAN instant power consumption and 5G RAN yearly energy consumption on values of standardized EE metrics. The presented analyses can serve as a reference in the selection of the most appropriate 5G BS deployment and operation approach, which will simultaneously ensure the transfer of permanently increasing DVs in a specific device density class and the highest possible levels of data and coverage EE metrics.
Due to the growing impact of the information and communications technology (ICT) sector on electricity usage and greenhouse gas emissions, telecommunication networks require new solutions which will enable the improvement of the energy efficiency of networks. Access networks, which are responsible for the last mile of connectivity and also for one of the largest shares in network energy consumption, are viable candidates for the implementation of new protocols, models and methods which will contribute to the reduction of the energy consumption of such networks. Among the different types of access networks, hybrid fiber–wireless (FiWi) networks are a type of network that combines the capacity and reliability of optical networks with the flexibility and availability of wireless networks, and as such, FiWi networks have begun to be extensively used in modern access networks. However, due to the advent of high-bandwidth applications and Internet of Things networks, the increased energy consumption of FiWi networks has become one of the most concerning challenges required to be addressed. This paper provides a comprehensive overview of the progress in approaches for improving the energy efficiency (EE) of different types of FiWi networks, which include the radio-and-fiber (R&F) networks, the radio-over-fiber networks (RoF), the FiWi networks based on multi-access edge computing (MEC) and the software-defined network (SDN)-based FiWi networks. It also discusses future directions for improving the EE in the FiWi networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.