Given the extensive allelic amino acid sequence polymorphism present in the first domain of A alpha, A beta, and E beta chains and its profound effects on class II function, the minimal polymorphism in the mouse E alpha chain (and in its human homologue DR alpha) is paradox. Two possible explanations for the lack of polymorphism in E alpha are: (1) the E alpha chain plays such a uniquely critical structural/functional role in antigen presentation, T-cell activation, repertoire selection, and/or pairing with E beta or other proteins for expression that it cannot vary, and mutations are selected against; (2) the E alpha chain plays a less significant role than the outer domains of other major histocompatibility complex (MHC) proteins in determining the interactions with processed peptides or with T-cell receptor (TCR), so there is no selective pressure to maintain new mutations. To explore this question we compared the ability of transfectants expressing wild type (wt) E alpha E beta d and mutant E alpha wt E beta d proteins to present peptides and bacterial superantigens to T-cell hybridomas. Mutations at the E alpha amino acid positions 31, 52, and 65&66, to residues that represent allelic alternatives in A alpha chains, significantly reduced activation of peptide-specific T hybridomas, and mutations at 71 sometimes enhanced T-cell stimulation. None of the E alpha mutations reduced, and some enhanced, superantigen stimulation of T-cell hybridomas. These results argue against the hypothesis that E alpha chains are minimally polymorphic because mutations in E alpha are functionally neutral.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.