The incidence of many cancer types is significantly reduced in individuals with Down syndrome1–4 and it is proposed that this broad cancer protection is conferred by the elevated expression of one or more of the 231 supernumerary genes on the extra copy of chromosome 21. One such gene is the Down syndrome candidate region-1 (Dscr1, RCAN1), which encodes a protein that suppresses vascular endothelial growth factor (VEGF)-mediated angiogenic signalling via the calcineurin pathway5–10. Here we show that DSCR1 is elevated in Down syndrome individuals and a mouse model of Down syndrome. Further, we show that the modest elevation in expression afforded by a single extra transgenic copy of Dscr1 is sufficient to confer significant suppression of tumor growth in mice and that such resistance is a consequence of a deficit in tumor angiogenesis arising from suppression of the calcineurin pathway. We also provide evidence that attenuation of calcineurin activity by DSCR1 together with another chromosome 21 gene DYRK1A, may be sufficient to dramatically diminish angiogenesis. These data provide a mechanism for the reduced cancer incidence in Down syndrome and identifies the calcineurin signalling pathway and its regulators DSCR1 and DYRK1A as potential therapeutic targets in cancers arising in all individuals.
SUMMARY Trisomy 21, or Down syndrome (DS), is the most common genetic cause of developmental delay and intellectual disability. To gain insight into the underlying molecular and cellular pathogenesis, we conducted a multi-region transcriptome analysis of DS and euploid control brains spanning from mid-fetal development to adulthood. We found genome-wide alterations in the expression of a large number of genes, many of which exhibited temporal and spatial specificity and were associated with distinct biological processes. In particular, we uncovered co-dysregulation of genes associated with oligodendrocyte differentiation and myelination that were validated via cross-species comparison to Ts65Dn trisomy mice. Furthermore, we show that hypomyelination present in Ts65Dn mice is in part due to cell-autonomous effects of trisomy on oligodendrocyte differentiation and results in slower neocortical action potential transmission. Together, these results identify defects in white matter development and function in DS and provide a transcriptional framework for further investigating DS neuropathogenesis.
Summary Over-inhibition is thought to be one of the underlying causes of the cognitive deficits in Ts65Dn mice, the most widely used model of Down syndrome (DS). Here we demonstrate a direct link between gene triplication and defects in neuron production during embryonic development. These neurogenesis defects lead to an imbalance between excitatory and inhibitory neurons and to increased inhibitory drive in the Ts65Dn forebrain. We discovered that Olig1 and Olig2, two genes triplicated in DS and Ts65Dn, are over-expressed in the Ts65Dn forebrain. To test the hypothesis that Olig triplication is causative for the neurological phenotype, we used a genetic approach to normalize the dosage of these two genes and thereby rescued the inhibitory neuron phenotype in the Ts65Dn brain. These data identify seminal alterations during brain development and demonstrate a mechanistic relationship between triplicated genes and these brain abnormalities in the Ts65Dn mouse.
Trisomy 21, one of the most prevalent congenital birth defects, results in a constellation of phenotypes collectively termed Down syndrome (DS). Mental retardation and motor and sensory deficits are among the many debilitating symptoms of DS. Alterations in brain growth and synaptic development are thought to underlie the cognitive impairments in DS, but the role of early brain development has not been studied because of the lack of embryonic human tissue and because of breeding difficulties in mouse models of DS. We generated a breeding colony of the Ts65Dn mouse model of DS to test the hypothesis that early defects in embryonic brain development are a component of brain dysfunction in DS. We found substantial delays in prenatal growth of the Ts65Dn cerebral cortex and hippocampus because of longer cell cycle duration and reduced neurogenesis from the ventricular zone neural precursor population. In addition, the Ts65Dn neocortex remains hypocellular after birth and there is a lasting decrease in synaptic development beginning in the first postnatal week. These results demonstrate that specific abnormalities in embryonic forebrain precursor cells precede early deficits in synaptogenesis and may underlie the postnatal disabilities in Ts65Dn and DS. The early prenatal period is therefore an important new window for possible therapeutic amelioration of the cognitive symptoms in DS.
Trisomic Ts65Dn mice show direct parallels with many phenotypes of Down syndrome (DS), including effects on the structure of cerebellum and hippocampus. A small segment of Hsa21 known as the 'DS critical region' (DSCR) has been held to contain a gene or genes sufficient to cause impairment in learning and memory tasks involving the hippocampus. To test this hypothesis, we developed Ts1Rhr and Ms1Rhr mouse models that are, respectively, trisomic and monosomic for this region. Here, we show that trisomy for the DSCR alone is not sufficient to produce the structural and functional features of hippocampal impairment that are seen in the Ts65Dn mouse and DS. However, when the critical region is returned to normal dosage in trisomic Ms1Rhr/Ts65Dn mice, performance in the Morris water maze is identical to euploid, demonstrating that this region is necessary for the phenotype. Thus, although the prediction of the critical region hypothesis was disproved, novel gene dosage effects were identified, which help to define how trisomy for this segment of the chromosome contributes to phenotypes of DS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.