Photoluminescence (PL) of sapphire single crystals as received and preirradiated by low energy Ar+ ions and electrons has been studied to reveal a relationship between sapphire charging under electron beam irradiation and radiation-induced defect formation. The photoluminescence spectra were obtained using a confocal microscope excitation wavelength of 445 nm as well as by a nonconfocal method with excitation at a wavelength of 355 nm. The lines observed in PL spectra for all samples are associated with both intrinsic and impurity defects. It has been established that preliminary ion irradiation leads to disordering of the near-surface region of the sample resulting in a significant increase in the photoluminescence intensity. Preliminary electron irradiation can lead to a change in the charge state of defects that initially exist in the crystal. Keywords: radiation-stimulated defects, sapphire photoluminescence, ion and electron irradiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.