In the present work, a methodology is presented where batch and fixed-bed column tests of dye sorption onto granular biosorbents are analyzed with properly selected models to estimate the parameters required for the rational design of pilot-scale units. The sorption of methylene blue (MB) onto banana peels (BP) was investigated as a case study. To identify the mechanisms of MB sorption onto BP, the pore structure and surface of BP were characterized with mercury intrusion porosimetry (MIP), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Batch tests were performed over the temperature range of 15–45 °C, and three models (Langmuir, Freundlich, Langmuir–Freundlich) were fitted to equilibrium and kinetic data for (i) estimating thermodynamic/kinetic parameters and (ii) choosing the model with the best goodness-of-fit. Sorption tests on fixed-bed columns were combined with a one-dimensional macroscopic convection/dispersion/sorption model to estimate the sorption parameters of BP beds. MB sorption onto BP was a purely exothermic (ΔH0~−20 kJ/mol), reversible, and monolayer chemisorption with high activation energy for the desorption step (Ed~29 kJ/mol) and low activation energy for the adsorption step (Ea~9 kJ/mol). The Langmuir isotherm (KL = 141.9 m3/kg, T = 25 °C) and Langmuir kinetic model (kd = 1.05 × 10−5 s−1) provided the best fitting to equilibrium and transient data of batch tests. The sorption capacity ~0.15–0.22 kg/kg and kinetic constant 0.3 × 10−5 s−1–4.0 × 10−5 s−1 estimated from tests on BP beds were comparable to those obtained from batch tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.