Η αριθμητική προσομοίωση κατασκευών και άλλων φορέων πρέπει να γίνεται με ένα τρόπο πουπροσφέρει ικανοποιητική ακρίβεια ενώ είναι υπολογιστικά εφικτός. Σε περιπτώσεις πολύπλοκηςγεωμετρίας, η ακριβής προσομοίωση του φορέα είναι ένα από τα σημαντικότερα προβλήματα πουαντιμετωπίζουν οι μηχανικοί. Οι σύγχρονες μέθοδοι προσομοίωσης μπορούν να προσφέρουν τηνεπιθυμητή ακρίβεια αλλά πολλές φορές έχουν υψηλό υπολογιστικό κόστος. Για να είναι μιαπροσομοίωση εφαρμόσιμη σε πραγματικά προβλήματα, θα πρέπει να πραγματοποιείται σε λογικάυπολογιστικά χρονικά πλαίσια. Επομένως, ένας σημαντικός παράγοντας για την εφαρμογή τωνπροσομοιώσεων στην πράξη είναι η αποδοτική υλοποίηση τους, η οποία θα επιτρέψει την εφαρμογήτους σε προβλήματα μεγάλης κλίμακας. Στις κλασικές μεθόδους πεπερασμένων στοιχείων (FEA) τομεγαλύτερο κόστος βρίσκεται στην επίλυση των αλγεβρικών εξισώσεων. Σε μη πλεγματικές μεθόδους(MMs) καθώς και στην ισογεωμετρική ανάλυση (IGA), το κόστος για την κατασκευή τωνχαρακτηριστικών μητρώων (π.χ. μητρώο στιβαρότητας) είναι ιδιαίτερα υψηλό. Επομένως, για ναμπορούν αυτές οι μέθοδοι να αξιοποιηθούν σε προβλήματα μεγάλης κλίμακας, απαιτούνται τεχνικέςμαζικής πολυεπεξεργασίας όχι μόνο για την επίλυση αλλά και για τη φάση κατασκευής τωνχαρακτηριστικών μητρώων, τα οποία απαιτούν αριθμητική ολοκλήρωση.Ο σκοπός της παρούσας διατριβής είναι η επιτάχυνση των υπολογιστικά απαιτητικών φάσεων τωνμεθόδων αριθμητικής προσομοίωσης με βασικά κριτήρια την αποδοτικότητα και επεκτασιμότητα σεπαράλληλο υπολογιστικό περιβάλλον. Για την επίλυση των εξισώσεων, οι μέθοδοι υποφορέων είναιιδιαίτερα ελκυστικές καθώς χωρίζουν το φορέα σε πολλούς υποφορείς και επιτρέπουν την ταυτόχρονηεπίλυσή τους. Όσον αφορά τη φάση κατασκευής των χαρακτηριστικών μητρών, ο υπολογισμός μεβάση τα μη μηδενικά στοιχεία του μητρώου επιτρέπει την παράλληλη υλοποίησή τους. Οι αριθμητικέςπράξεις που πραγματοποιούνται κατά την εκτέλεση ενός αλγορίθμου πρέπει να γίνονται αποδοτικά.Επομένως, υπολογισμοί όπως πράξεις με μητρώα θέλουν ιδιαίτερη προσοχή. Κάθε τύπος μητρώουείναι κατάλληλος για διαφορετικές λειτουργίες και πρέπει να χρησιμοποιείται κατάλληλα. Όλα ταπαραπάνω συνδυάζονται με τις κάρτες γραφικών (GPUs) οι οποίες έχουμε εξαιρετικές δυνατότητες γιαπαράλληλους υπολογισμούς. Σε αυτή τη διατριβή υλοποιούνται κώδικες για κάρτες γραφικών για τηφάση επίλυσης στη μέθοδο των πεπερασμένων στοιχείων καθώς και τη φάση κατασκευής τωνχαρακτηριστικών μητρώων στις μη-πλεγματικές και στις ισογεωμετρικές μεθόδους με σκοπό τη
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.