The brown bear has proved a useful model for studying Late Quaternary mammalian phylogeography. However, information is lacking from northern continental Eurasia, which constitutes a large part of the species' current distribution. We analysed mitochondrial DNA sequences (totalling 1943 bp) from 205 bears from northeast Europe and Russia in order to characterize the maternal phylogeography of bears in this region. We also estimated the formation times of the sampled brown bear lineages and those of its extinct relative, the cave bear. Four closely related haplogroups belonging to a single mitochondrial subclade were identified in northern continental Eurasia. Several haplotypes were found throughout the whole study area, while one haplogroup was restricted to Kamchatka. The haplotype network, estimated divergence times and various statistical tests indicated that bears in northern continental Eurasia recently underwent a sudden expansion, preceded by a severe bottleneck. This brown bear population was therefore most likely founded by a small number of bears that were restricted to a single refuge area during the last glacial maximum. This pattern has been described previously for other mammal species and as such may represent one general model for the phylogeography of Eurasian mammals. Bayesian divergence time estimates are presented for different brown and cave bear clades. Moreover, our results demonstrate the extent of substitution rate variation occurring throughout the phylogenetic tree, highlighting the need for appropriate calibration when estimating divergence times.
West Nile Virus (WNV) is the causative agent of a vector-borne, zoonotic disease with a worldwide distribution. Recent expansion and introduction of WNV into new areas, including southern Europe, has been associated with severe disease in humans and equids, and has increased concerns regarding the need to prevent and control future WNV outbreaks. Since 2010, 524 confirmed human cases of the disease have been reported in Greece with greater than 10% mortality. Infected mosquitoes, wild birds, equids, and chickens have been detected and associated with human disease. The aim of our study was to establish a monitoring system with wild birds and reported human cases data using Geographical Information System (GIS). Potential distribution of WNV was modelled by combining wild bird serological surveillance data with environmental factors (e.g. elevation, slope, land use, vegetation density, temperature, precipitation indices, and population density). Local factors including areas of low altitude and proximity to water were important predictors of appearance of both human and wild bird cases (Odds Ratio = 1,001 95%CI = 0,723–1,386). Using GIS analysis, the identified risk factors were applied across Greece identifying the northern part of Greece (Macedonia, Thrace) western Greece and a number of Greek islands as being at highest risk of future outbreaks. The results of the analysis were evaluated and confirmed using the 161 reported human cases of the 2012 outbreak predicting correctly (Odds = 130/31 = 4,194 95%CI = 2,841–6,189) and more areas were identified for potential dispersion in the following years. Our approach verified that WNV risk can be modelled in a fast cost-effective way indicating high risk areas where prevention measures should be implemented in order to reduce the disease incidence.
The objective of this work was to develop, use and present a detailed questionnaire for the evaluation of health management in dairy small ruminants; it includes 442 questions organised in seven sections: general, infrastructure, animals, production characteristics, health management, nutrition, human resources. Consistency of replies was evaluated in 27 farmers, interviewed twice. Inconsistent replies were given by all farmers to 30 different questions (Cronbach’s coefficient alpha: 0.987). Then, interviews were performed in 444 farms around Greece. Mean duration of an interview was 63.6 min. Clarifications were requested by 273 farmers to 22 different questions (maximum per farmer: 8). The experience of the investigator, the primary language of farmers and asking clarifications by the farmers affected the duration of the interview. The questionnaire can be used for research work in the field, to record details in the farms under study. In accord with the needs of a particular study, it can be modified, by adding more specific questions or omitting others deemed of less importance. Moreover, it can also be used for routine monitoring purposes, as a useful means to record and maintain details of farms during clinical work. To the best of our knowledge, the questionnaire is the most extensive and detailed one available internationally for dairy small ruminants.
During the last three years Greece is experiencing the emergence of West Nile virus (WNV) epidemics. Within this framework, an integrated surveillance and control programme (MALWEST project) with thirteen associate partners was launched aiming to investigate the disease and suggest appropriate interventions. One out of seven work packages of the project is dedicated to the State of the Art report for WNV. Three expert working groups on humans, animals and mosquitoes were established. Medical databases (PubMed, Scopus) were searched together with websites: e.g., WHO, CDC, ECDC. In total, 1,092 relevant articles were initially identified and 258 of them were finally included as references regarding the current knowledge about WNV, along with 36 additional sources (conference papers, reports, book chapters). The review is divided in three sections according to the fields of interest: (1) WNV in humans (epidemiology, molecular characteristics, transmission, diagnosis, treatment, prevention, surveillance); (2) WNV in animals (epidemiological and transmission characteristics concerning birds, horses, reptiles and other animal species) and (3) WNV in mosquitoes (control, surveillance). Finally, some examples of integrated surveillance programmes are presented. The introduction and establishment of the disease in Greece and other European countries further emphasizes the need for thorough research and broadening of our knowledge on this viral pathogen.
BackgroundA West Nile virus (WNV) disease outbreak occurred in 2010 in northern Greece with a total of 262 laboratory-confirmed human cases and 35 deaths. A serological and molecular surveillance was conducted on samples of hunter-harvested wild birds prior to and during the outbreak.FindingsSerum and tissue samples from 295 resident and migratory wild birds, hunter-harvested during the 2009–2010 and 2010–2011 hunting seasons at the epicenter of the outbreak in northern Greece, were tested for the presence of WNV-specific antibodies by immunofluorescence assay and virus neutralization test. WNV neutralizing antibodies were detected in 53 avian samples. Fourteen positive sera were obtained from birds hunter-harvested up to 8 months prior to the human outbreak. Specific genetic determinants of virulence (His249Pro NS3 mutation, E-glycosylation motif) were recognized in a WNV lineage 2 strain isolated from a hunter-harvested Eurasian magpie and a nucleotide mismatch was revealed between this strain and a mosquito WNV strain isolated one month earlier in the same area.ConclusionsThis is the first report regarding exposure of wild birds to WNV prior to the 2010 outbreak, in Greece. Results provide evidence of the implication of wild birds in a local enzootic cycle that could allow maintenance and amplification of the virus before and during the outbreak. Findings of past exposure of migratory birds to WNV upon their arrival in Greece during autumn migration, suggest avian species with similar migration traits as candidates for the introduction of WNV into Greece. The possibility that an endemic circulation of WNV could have caused the outbreak, after an amplification cycle due to favorable conditions cannot be excluded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.