The problem of reassembling an object from its parts or fragments has never been addressed with a unified computational approach, which depends on the pure geometric form of the parts and not application-specific features. We propose a method for the automatic reconstruction of a model based on the geometry of its parts, which may be computer-generated models or range-scanned models. The matching process can benefit from any other external constraint imposed by the specific application.
This paper describes a semi-automatic system for the reconstruction of archaeological finds from their fragments. Virtual Archaeologist is a system that uses computer graphics to calculate a measure of complementary matching between scanned data and employs optimization algorithms in order to estimate the correct relative pose between fragments and cluster those fragments that belong to the same entity.
This paper presents a fast and easy to implement voxelization algorithm, which is based on the z-buffer. Unlike most existing methods, our approach is suitable both for polygonal and analytical objects. The efficien cy of the method is independent of the object complexity and can b e accelerated by taking advantage of widely available, low-cost hardware.
Presented here is a fast method that combines curve matching techniques with a surface matching algorithm to estimate the positioning and respective matching error for the joining of three-dimensional fragmented objects. Furthermore, this paper describes how multiple joints are evaluated and how the broken artefacts are clustered and transformed to form potential solutions of the assemblage problem. q
The problem of the restoration of broken artifacts, where large parts could be missing, is of high importance in archaeology. The typical manual restoration can become a tedious and error-prone process, which also does not scale well. In recent years, many methods have been proposed for assisting the process, most of which target specialized object types or operate under very strict constraints. We propose a digital shape restoration pipeline consisting of proven, robust methods for automatic fragment reassembly and shape completion of generic three-dimensional objects of arbitrary type. In this pipeline, first we introduce a novel unified approach for handling the reassembly of objects from heavily damaged fragments by exploiting both fracture surfaces and salient features on the intact sides of fragments, when available. Second, we propose an object completion procedure based on generalized symmetries and a complementary part extraction process that is suitable for driving the fabrication of missing geometry. We demonstrate the effectiveness of our approach using real-world fractured objects and software implemented as part of the European Union--funded PRESIOUS project, which is also available for download from the project site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.