As landslides are very common in Greece, causing serious problems to the social and economic welfare of many communities, the implementation of a proper hazard analysis system will help the creation of a reliable susceptibility map. Shis will help local communities to define a safe land use and urban development. The purpose of this study is to compare the implementation of two semiquantitative landslide assessment approaches, using landslide susceptibility maps compiled in a GIS environment. The compared methods are rock engineering system (RES) and the analytic hierarchy process (AHP). For the landslide susceptibility analysis, the Northeastern part of the Achaia County was examined. This area suffers from many landslides, because of its neighborhood with the tectonically active Corinthian Gulf and its geological setting (Neogene sediments, flysch and other bedrock formations, with local overthrusts). Ten parameters were used in both methodologies, and each one was separated into five categories ranging from 0 to 4, representing their specific conditions derived from the investigation of the landslides in the western part of the study area (ranking area). A layer map was generated for each parameter, using GIS, while the weighting coefficients of each methodology were used for the compilation of RES and AHP final maps of the eastern part of the study area (validating area). By examining these two maps, it is revealed that even though both correctly show the landslide status of the second site, the RES map reveals a better behavior in the spatial distribution of the various landslide susceptibility zones.
This paper presents an application of rock engineering system (RES) in an attempt to reveal and assess the inherent instability potential of 388 sites where equivalent landslides have been manifested and recorded in the region of Karditsa County, Greece. The main objective has been defining the principal causative and triggering factors responsible for the manifestation of landslide phenomena, quantify their interactions, obtain their weighted coefficients, and calculate the instability index, which refers to the inherent potential instability of each natural slope of the examined region. From the statistical interpretation of the data reported in a well-documented database and concerning the examined failure sites, a clear correlation between the instability index and the area affected by a single landslide event has been revealed. Almost the entire failure sites, 98% of the examined slope sites, exhibit an instability index value over 55, a value which is thought to be a critical threshold for landslide manifestation concerning natural slopes in Karditsa County. It is argued that the presented RES methodology, engaging the selected set of parameters, could be considered as an effective expert's tool for ranking, in an objectively optimal and simple way, the instability potential of natural slopes in Karditsa County, and thus providing a tool for sound zoning landslide hazard.
The geological, geomorphic conditions of a mountainous environment along with precipitation and human activities influence landslide occurrences. In many cases, their relation to landslide events is not well defined. The scope of the present study is to identify the influence of physical and anthropogenic factors in landslide activity. The study area is a mountainous part of the northern Peloponnesus in southern Greece. The existing landslides, lithology, slope angle, rainfall, two types of road network (highway-provincial roads and rural roads) along with land use of the study area are taken into consideration. Each physical and anthropogenic factor is further divided into sub-categories. Statistical analysis of landslide frequency and density, as well as frequency and density ratios, are applied and combined with a geographic information system (GIS) to evaluate the collected data and determine the relationship between physical and anthropogenic factors and landslide activity. The results prove that Plio-Pleistocene fine-grained sediments and flysch, relatively steep slopes (15 • -30 • ) and a rise in the amount of rainfall increase landslide frequency and density. Additionally, Plio-Pleistocene fine-grained sediments and flysch, as well as schist chert formations, moderate (5 • -15 • ) and relatively steep slopes (15 • -30 • ), along with the amount of rainfall of >700 mm are strongly associated with landslide occurrences. The frequency and magnitude of landslides increase in close proximity to roads. Their maximum values are observed within the 50 m buffer zone. This corresponds to a 100 m wide zone along with any type of road corridors, increasing landslide occurrences. In addition, a buffer zone of 75 m or 150 m wide zone along highway and provincial roads, as well as a buffer zone of 100 m or 200 m wide zones along rural roads, are strongly correlated with landslide events. The extensive cultivated land of the study area is strongly related to landslide activity. By contrast, urban areas are poorly related to landslides, because most of them are located in the northern coastal part of the study area where landslides are limited. The results provide information on physical and anthropogenic factors characterizing landslide events in the study area. The applied methodology rapidly estimates areas prone to landslides and it may be utilized for landslide hazard assessment mapping as well as for new and existing land use planning projects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.