Plasma processing is used to fabricate super hydrophilic or super hydrophobic polymeric surfaces by means of O2 plasma etching of two organic polymers, namely, poly(methyl methacrylate) (PMMA) and poly(ether ether ketone) (PEEK); a C4F8 plasma deposition follows O2 plasma etching, if surface hydrophobization is desired. We demonstrate high aspect ratio pillars with height ranging from 16 nm to several micrometers depending on the processing time, and contact angle (CA) close to 0 degrees after O2-plasma treatment or CA of 153 degrees (with CA hysteresis lower than 5 degrees) after fluorocarbon deposition. Super hydrophobic surfaces are robust and stable in time; in addition, aging of super hydrophilic surfaces is significantly retarded because of the beneficial effect of the nanotextured topography. The mechanisms responsible for the plasma-induced PMMA and PEEK surface nanotexturing are unveiled through intelligent experiments involving intentional modification of the reactor wall material and X-ray photoelectron spectroscopy, which is also used to study the surface chemical modification in the plasma. We prove that control of plasma nanotexture can be achieved by carefully choosing the reactor wall material.
A rapid, easy-to-implement, and potentially large-scale production method for fabricating
high-aspect-ratio columnar-like nanostructures on poly(dimethylsiloxane) (PDMS)
is demonstrated. Plasma treatment of PDMS under appropriate conditions in
SF6
gas, followed by plasma-induced fluorocarbon film deposition, results in PDMS surfaces of
fully controlled wetting properties, geometrical characteristics leading to robust
superhydrophobic surfaces, and transparency. Potential applications to microfluidic devices
are outlined.
Ordered, hierarchical (triple-scale), superhydrophobic, oleophobic, superoleophobic, and amphiphilic surfaces on poly(methyl methacrylate) PMMA polymer substrates are fabricated using polystyrene (PS) microparticle colloidal lithography, followed by oxygen plasma etching-nanotexturing (for amphiphilic surfaces) and optional subsequent fluorocarbon plasma deposition (for amphiphobic surfaces). The PS colloidal microparticles were assembled by spin-coating. After etching/nanotexturing, the PMMA plates are amphiphilic and exhibit hierarchical (triple-scale) roughness with microscale ordered columns, and dual-scale (hundred nano/ten nano meter) nanoscale texture on the particles (top of the column) and on the etched PMMA surface. The spacing, diameter, height, and reentrant profile of the microcolumns are controlled with the etching process. Following the design requirements for superamphiphobic surfaces, we demonstrate enhancement of both hydrophobicity and oleophobicity as a result of hierarchical (triple-scale) and re-entrant topography. After fluorocarbon film deposition, we demonstrate superhydrophobic surfaces (contact angle for water 168°, compared to 110° for a flat surface), as well as superoleophobic surfaces (153° for diiodomethane, compared to 80° for a flat surface).
Superhydrophobic and superamphiphobic toward superoleophobic polymeric surfaces of polymethyl methacrylate (PMMA), polyether ether ketone (PEEK), and polydimethyl siloxane (PDMS) are fabricated in a two-step process: (1) plasma texturing (i.e., ion-enhanced plasma etching with simultaneous roughening), with varying plasma chemistry depending on the polymer, and subsequently (2) grafting of self-assembled perfluorododecyltrichlorosilane monolayers (SAMs). Depending on the absence or not of an etch mask (i.e., colloidal microparticle self-assembly on it), random or ordered hierarchical micro-nanotexturing can be obtained. We demonstrate that stable organic monolayers can be grafted onto all these textured polymeric surfaces. After the monolayer deposition, the initially hydrophilic polymeric surfaces become superamphiphobic with static contact angles for water and oils>153°, for hexadecane>142°, and hysteresis<10° for all surfaces. This approach thus provides a simple and generic method to obtain superamphiphobicity on polymers toward superoleophobicity. Hydrolytic and hexadecane immersion tests prove that superamphiphobicity is stable for more than 14 days. We also perform nanoscratch and post nanoscratch tests to prove the scratch resistance of both the texture and the SAM and demonstrate lower coefficient of friction of the SAM compared to the uncoated surface. Scanning electron microscope observation after the nanoscratch tests confirms the scratch resistance of the surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.