Methane, ethylene, and acetylene ices were irradiated in a ultra-high vacuum vessel between 10 K and 50 K with 7.3 MeV protons as well as 9.0 MeV He2`nuclei to simulate the interaction of galactic cosmic-ray particles with extraterrestrial, organic ices and to elucidate a mechanistic model to synthesize experimentally detected polycyclic aromatic hydrocarbons (PAHs). Theoretical calculations center on computer simulations of ion-induced collision cascades in irradiated methane targets. MeV ions induce hydrogen and carbon knock-on particles in elastic encounters with the target atoms. Each primary knock-on triggers one collision cascade with up to 70 suprathermal carbon atoms concentrated in one to two subcascades in 0.6È5 ] 103At the end point of each single trajectory, every suprathermal Ó3. carbon atom can form an individual reaction center of hydrogen abstraction and insertion in or addition to chemical bonds of a reactant molecule. In the relaxation phase of this energized volume, overlapping reaction zones likely form observed PAHs napthalene, phenanthrene/azulene, and coronene. This multicenter mechanism establishes a versatile route to synthesize complex molecules in extraterrestrial ices even at temperatures as low as 10 K within cosmic-ray-initiated single collision cascades.
Methane, ethylene, and acetylene ices are irradiated in a ultra high vacuum vessel at 10 K with 9.0 MeV a-particles and 7.3 MeV protons to elucidate mechanisms to form hydrocarbon molecules upon interaction of Galactic cosmic-ray particles with extraterrestrial, organic ices. Theoretical calculations focus on computer simulations of ion-induced collision cascades in irradiated targets. Our experimental and computational investigations reveal that each MeV particle transfers its kinetic energy predominantly through inelastic encounters to the target leading to electronic excitation and ionization of the target molecules. Here electronically excited species can fragment to mobile H atoms and non-CH 4 mobile radicals. The potential energy stored in Coulomb interaction of the ions release ener-CH 3 CH 4
Astronomical observations indicate that formation and destruction of dust mantles on cometary nuclei may be the cause for erratic and systematic variations of eometary activity, i.e. emission of dust. A laboratory experiment (KOSI-9) has been performed Io study the evolution of a dust mantle on top of a sublimating ice-dust mixture in vacuum. A sample consisting of water ice with a 10% (by weight) admixture of olivine grains has been insolated in three periods at variable intensities from 200 to 1900 W/m 2. Both increasing surface temperature of the sample and decreasing gas and particle emissions indicated the formation of a dust mantle during the first period. During the second insolation period after the gas flux had reached a critical value of a few 1021 water molecules m -2 s -1, avalanches of mantle material occurred on the inclined sample surface, broke up the mantle locally, and opened up a fresh icy surface. Enhanced ice and dust particle emission resumed for some time from these spots. A large number of the emitted dust particles were of a fluffy aggregate structure, i.e., they had large cross section to mass ratios compared to compact particles. During the third period the critical gas flux was not reached and no enhanced dust and ice emission was observed. A dry dust mantle of a few millimeters thickness developed during the course of the experiment. Consequences of these findings for eometary scenarios are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.