This experience report describes a style of applying symbolic model checking developed over the course of four years at Amazon Web Services (AWS). Lessons learned are drawn from proving properties of numerous C-based systems, e.g., custom hypervisors, encryption code, boot loaders, and an IoT operating system. Using our methodology, we find that we can prove the correctness of industrial low-level C-based systems with reasonable effort and predictability. Furthermore, AWS developers are increasingly writing their own formal specifications. All proofs discussed in this paper are publicly available on GitHub. CCS CONCEPTS • Software and its engineering → Formal software verification; Model checking; Correctness; • Theory of computation → Program reasoning.
This article describes a style of applying symbolic model checking developed over the course of four years at Amazon Web Services (AWS). Lessons learned are drawn from proving properties of numerous C‐based systems, for example, custom hypervisors, encryption code, boot loaders, and an IoT operating system. Using our methodology, we find that we can prove the correctness of industrial low‐level C‐based systems with reasonable effort and predictability. Furthermore, AWS developers are increasingly writing their own formal specifications. As part of this effort, we have developed a CI system that allows integration of the proofs into standard development workflows and extended the proof tools to provide better feedback to users. All proofs discussed in this article are publicly available on GitHub.
High performance architectures for processing distributed data streams, such as Flink, Spark Streaming, and Storm, are increasingly deployed in emerging data-driven computing systems. Exploiting the parallelism afforded by such platforms, while preserving the semantics of the desired computation, is prone to errors, and motivates the development of tools for specification, testing, and verification. We focus on the problem of differential output testing for distributed stream processing systems, that is, checking whether two implementations produce equivalent output streams in response to a given input stream. The notion of equivalence allows reordering of logically independent data items, and the main technical contribution of the paper is an optimal online algorithm for checking this equivalence. Our testing framework is implemented as a library called DiffStream in Flink. We present four case studies to illustrate how our framework can be used to (1) correctly identify bugs in a set of benchmark MapReduce programs, (2) facilitate the development of difficult-to-parallelize high performance applications, and (3) monitor an application for a long period of time with minimal performance overhead. CCS Concepts: • Software and its engineering → Software testing and debugging; • Information systems → Stream management; • Theory of computation → Online algorithms.
Serverless is a popular choice for cloud service architects because it can provide scalability and load-based billing with minimal developer effort. Functions-as-a-service (FaaS) are originally stateless, but emerging frameworks add stateful abstractions. For instance, the widely used Durable Functions (DF) allow developers to write advanced serverless applications, including reliable workflows and actors, in a programming language of choice. DF implicitly and continuosly persists the state and progress of applications, which greatly simplifies development, but can create an IOps bottleneck. To improve efficiency, we introduce Netherite, a novel architecture for executing serverless workflows on an elastic cluster. Netherite groups the numerous application objects into a smaller number of partitions, and pipelines the state persistence of each partition. This improves latency and throughput, as it enables workflow steps to group commit, even if causally dependent. Moreover, Netherite leverages FASTER's hybrid log approach to support larger-than-memory application state, and to enable efficient partition movement between compute hosts. Our evaluation shows that (a) Netherite achieves lower latency and higher throughput than the original DF engine, by more than an order of magnitude in some cases, and (b) that Netherite has lower latency than some commonly used alternatives, like AWS Step Functions or cloud storage triggers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.