Η εκπαίδευση σε βαθιά νευρωνικά δίκτυα (ΒΝΔ) είναι μια απαραίτητη διαδικασία στη μηχανική μάθηση. Η διαδικασία εκπαίδευσης των ΒΝΔ στοχεύει στη βελτιστοποίηση των τιμών των παραμέτρων του δικτύου, που συχνά βασίζεται στην παράγωγο των λογαριθμικών πιθανοτήτων των παραμέτρων. Ως εκ τούτου, είναι πολύ πιθανό η διαδικασία βελτιστοποίησης να βρει τοπικές βέλτιστες τιμές αντί για καθολικές. Επιπλέον, οι συμβατικές προσεγγίσεις που χρησιμοποιούνται για αυτή τη διαδικασία, όπως οι μέθοδοι Μαρκοβιανής αλυσίδας Μόντε Κάρλο, όχι μόνο προσφέρουν μη βέλτιστη απόδοση χρόνου εκτέλεσης, αλλά επίσης αποτρέπουν την αποτελεσματική παραλληλοποίηση λόγω εγγενών εξαρτήσεων στη διαδικασία. Σε αυτή τη διατριβή, εξετάζουμε μια εναλλακτική προσέγγιση στις μεθόδους Μαρκοβιανής αλυσίδας Μόντε Κάρλο (Markov Chain Monte Carlo, MCMC), τον δειγματολήπτη ακολουθιακών Μόντε Κάρλο (Sequential Monte Carlo, SMC), ο οποίος γενικεύει τα φίλτρα σωματιδίων (particle filters). Πιο συγκεκριμένα, η διατριβή εστιάζει στη βελτίωση της απόδοσης και της ακρίβειας των μεθόδων SMC, ιδιαίτερα στο πλαίσιο της πλήρους Μπεϋζιανής μάθησης. Σε αυτό το πλαίσιο, η διατριβή προτείνει μια νέα μέθοδο εκπαίδευσης νευρωνικών δικτύων χρησιμοποιώντας τις μεθόδους σημαντικής δειγματοληψίας (μέθοδος importance sampling) και επαναδειγματοληψίας. Η αρχική σύγκριση των δύο μεθόδων αποκαλύπτει ότι η προτεινόμενη μεθοδολογία είναι χειρότερη τόσο στην ακρίβεια όσο και στην απόδοση. Αυτό οδήγησε την έρευνα να επικεντρωθεί στην βελτίωση της απόδοσης και ακρίβειας της προτεινόμενης μεθοδολογίας. Η ανάλυση απόδοσης ξεκίνησε με την εφαρμογή μιας νέας προτεινόμενης, παράλληλης και πλήρως κατανεμημένης μεθοδολογίας επαναδειγματοληψίας, με βελτιωμένη χρονική πολυπλοκότητα από την αρχική προσέγγιση χρησιμοποιώντας δύο πλαίσια MapReduce, το Hadoop και το Spark. Τα αποτελέσματα δείχνουν ότι το Spark είναι έως και 25 φορές ταχύτερο από το Hadoop, ενώ στο Spark η νέα προτεινόμενη μεθοδολογία είναι έως και 10 φορές ταχύτερη από την αρχική μέθοδο. Ωστόσο, παρατηρείται ότι η εφαρμογή του ίδιου αλγορίθμου στο Message Passing Interface (MPI) παρέχει σημαντικά καλύτερους χρόνους εκτέλεσης και είναι πιο κατάλληλος για τον προτεινόμενο αλγόριθμο. Η ανάλυση ακρίβειας ξεκίνησε με πειράματα που δείχνουν ότι ο βασικός δειγματολήπτης SMC παρέχει χειρότερη ακρίβεια από τους εναλλακτικούς ή ανταγωνιστικούς αλγόριθμους MCMC. Τρεις διαφορετικές στρατηγικές εφαρμόζονται στον βασικό δειγματολήπτη SMC παρέχοντας καλύτερη ακρίβεια. Η ανάλυση επεκτείνεται για να συμπεριλάβει ανταγωνιστικούς αλγόριθμους. Η εξαντλητική αξιολόγηση δείχνει ότι η προτεινόμενη προσέγγιση προσφέρει ανώτερη απόδοση και ακρίβεια.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.