Osteosarcoma is the most frequent primary bone cancer, mainly affecting those of young ages. Although surgery combined with cytotoxic chemotherapy has significantly increased the chances of cure, recurrent and refractory disease still impose a tough therapeutic challenge. We performed a systematic literature review of the available clinical evidence, regarding treatment of recurrent and/or refractory osteosarcoma over the last two decades. Among the 72 eligible studies, there were 56 prospective clinical trials, primarily multicentric, single arm, phase I or II and non-randomized. Evaluated treatment strategies included cytotoxic chemotherapy, tyrosine kinase and mTOR inhibitors and other targeted agents, as well as immunotherapy and combinatorial approaches. Unfortunately, most treatments have failed to induce objective responses, albeit some of them may sustain disease control. No driver mutations have been recognized, to serve as effective treatment targets, and predictive biomarkers of potential treatment effectiveness are lacking. Hopefully, ongoing and future clinical and preclinical research will unlock the underlying biologic mechanisms of recurrent and refractory osteosarcoma, expanding the therapeutic choices available to pre-treated osteosarcoma patients.
Background: We sought to determine whether DNA damage response (DDR)-related aberrations predict therapeutic benefit in cisplatin-treated head and neck squamous cell carcinoma (HNSCC) patients and how DDR pathways are modulated after treatment with olaparib alone or in combination with cisplatin or durvalumab. Patients and methods: Oxidative stress, abasic sites and DDR-related parameters, including endogenous DNA damage, DNA repair mechanisms and apoptosis rates, were evaluated in HNSCC cell lines and peripheral blood mononuclear cells from 46 healthy controls (HC) and 70 HNSCC patients at baseline and following treatment with cisplatincontaining chemoradiation or nivolumab or enrolled in the OPHELIA phase II trial (NCT02882308; olaparib alone, olaparib plus cisplatin, olaparib plus durvalumab). Results: HNSCC patients at diagnosis exhibited deregulated DDR-related parameters and higher levels of oxidative stress and abasic sites compared with HC (all P < 0.05). Accordingly, nucleotide excision repair (NER; ERCC1, ERCC2/XPD, XPA, XPC) and base excision repair (APEX1, XRCC1) genes were downregulated in patients versus HC whereas double-strand breaks repair (MRE11A, RAD50, RAD51, XRCC2) and mismatch repair (MLH1, MSH2, MSH3) genes were overexpressed. Corresponding results were obtained in cell lines (all P < 0.001). Excellent correlations were observed between individual ex vivo and in vivo/therapeutic results, with cisplatin non-responders showing higher levels of endogenous DNA damage, augmented oxidative stress and abasic sites, increased NER capacities and reduced apoptosis than responders (all P < 0.05). Also, longer progression-free survival correlated with lower NER capacity (P ¼ 0.037) and increased apoptosis (P ¼ 0.029). Interestingly, treatment with olaparib-containing regimens results in the accumulation of cytotoxic DNA damage and exerts an extra antitumor effect by elevating oxidative stress (all P < 0.05). Nivolumab induced no significant changes in the DDR parameters examined. Conclusions: Aberrations in DDR signals are implicated in the response to HNSCC chemotherapy and can be exploited as novel therapeutic targets, sensitive/effective non-invasive biomarkers as well as for the design of novel clinical trials.
Background: We sought to compare patterns of response to immune checkpoint inhibitors (ICI) with respect to clinical and genomic features in a retrospective cohort of patients with recurrent/metastatic (R/M) head and neck squamous cell carcinoma (HNSCC). Methods: One hundred seventeen patients with R/M HNSCC treated with ICI were included in this study. Tumor growth kinetics (TGK) prior to and TGK upon immunotherapy (IO) was available for 49 patients. The TGK ratio (TGKR, the ratio of tumor growth velocity before and upon treatment) was calculated. Hyperprogression (HPD) was defined as TGKR ≥ 2. Results: HPD was documented in 18 patients (15.4% of the whole cohort). Patients with HPD had statistically significant shorter progression free survival (PFS) (median PFS 1.8 months (95% CI, 1.03–2.69) vs. 6.1 months for patients with non-HPD (95% CI, 4.78–7.47), p = 0.0001) and overall survival (OS) (median OS 6.53 months (95% CI, 0–13.39) vs. 15 months in patients with non HPD (95% CI, 7.1–22.8), p = 0.0018). In a multivariate Cox analysis, the presence of HPD remained an independent prognostic factor (p = 0.049). Primary site in the oral cavity and administration of ICI in the second/third setting were significant predictors of HPD in multivariate analysis (p = 0.028 and p = 0.012, respectively). Genomic profiling revealed that gene amplification was more common in HPD patients. EGFR gene amplification was only observed in HPD patients, but the number of events was inadequate for the analysis to reach statistical significance. The previously described MDM2 amplification was not identified. Conclusions: HPD was observed in 15.4 % of patients with R/M HNSCC treated with IO and was associated with worse PFS and OS. EGFR amplification was identified in patients with HPD.
Sarcomas are a group of rare mesenchymal malignant tumors that arise from transformed cells of the mesenchymal connective tissue, which are challenging to treat. The majority of sarcomas are soft tissue sarcomas (STSs; 75%) and this heterogeneous group of tumors is further comprised of gastrointestinal stromal tumors (~15%) and bone sarcomas (10%). Although surgery remains the current primary therapeutic approach for localized disease, recurrent, metastatic and refractory sarcomas require cytotoxic chemotherapy, which usually yields poor results. Therefore the efficiency of sarcoma treatment imposes a difficult problem. Furthermore, even though progress has been made towards understanding the underlying molecular signaling pathways of sarcoma, there are limited treatment options. The aim of the present study was therefore to perform a systematic literature review of the available clinical evidence regarding the role of tyrosine kinase inhibitors (TKIs) in patients with recurrent or refractory STSs and bone sarcomas over the last two decades. Tyrosine kinases are principal elements of several intracellular molecular signaling pathways. Deregulation of these proteins has been implicated in driving oncogenesis via the crosstalk of pivotal cellular signaling pathways and cascades, including cell proliferation, migration, angiogenesis and apoptosis. Subsequently, small molecule TKIs that target these proteins provide a novel potential therapeutic approach for several types of tumor by offering significant clinical benefits. Among the eligible articles, there were 45 prospective clinical trials, primarily multicentric, single arm, phase II and non-randomized. Numerous studies have reported promising results regarding the use of TKIs, mainly resulting in disease control in patients with STSs. The lack of randomized clinical trials demonstrates the ambiguous efficiency of various studied treatment options, which therefore currently limits the approved drugs used in clinical practice. Research both in clinical and preclinical settings is needed to shed light on the underlying molecular drivers of sarcomagenesis and will identify novel therapeutic approaches for pretreated patients. Contents 1. Introduction 2. Methods 3. Results of the literature meta-analysis 4. Discussion 5. Conclusion
BackgroundWe sought to determine the prognostic role of indoleamine 2,3-dioxygenase 1 (IDO1) by evaluating IDO1 expression in circulating tumour cells (CTCs) at baseline and after completion of chemoradiotherapy in patients with locally advanced (LA) head and neck squamous cell carcinoma (HNSCC) treated with curative intent.MethodsIn a prospective cohort of 113 patients with LA HNSCC, we evaluated expression of IDO1 in the EpCAM+ CTC fraction at baseline and after cisplatin chemoradiation. The prognostic value of combined programmed cell death ligand-1 (PDL-1) and IDO1 expression was assessed.ResultsIDO1 was significantly overexpressed at baseline compared with the post-treatment counterparts (p=0.007). IDO1 messenger RNA (mRNA) expression at baseline was associated with better survival in terms of progression-free survival (PFS) (HR=0.19, p=0.017). Post-treatment IDO1 mRNA levels were correlated with unfavourable prognosis in terms of overall survival (OS) (HR=3.27, p=0.008). Patients with combined decreased expression levels of PDL-1 and IDO1 after treatment exhibited superior PFS (p=0.043) and OS (p=0.021).ConclusionsOur results strongly suggest that IDO1 mRNA expression is an independent prognostic factor for clinical outcome. Our study provides useful information for future trials combining chemoradiation with immune checkpoint inhibitors and IDO1 inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.