Detection of the IceCube-170922A neutrino coincident with the flaring blazar TXS 0506+056, the first and only ∼3σ high-energy neutrino source association to date, offers a potential breakthrough in our understanding of highenergy cosmic particles and blazar physics. We present a comprehensive analysis of TXS 0506+056 during its flaring state, using newly collected Swift, NuSTAR, and X-shooter data with Fermi observations and numerical models to constrain the blazar's particle acceleration processes and multimessenger (electromagnetic and high-energy neutrino) emissions. Accounting properly for electromagnetic cascades in the emission region, we find a physically-consistent picture only within a hybrid leptonic scenario, with γ-rays produced by external inverse-Compton processes and highenergy neutrinos via a radiatively-subdominant hadronic component. We derive robust constraints on the blazar's neutrino and cosmic-ray emissions and demonstrate that, because of cascade effects, the 0.1-100 keV emissions of TXS 0506+056 serve as a better probe of its hadronic acceleration and high-energy neutrino production processes than its GeV-TeV emissions. If the IceCube neutrino association holds, physical conditions in the TXS 0506+056 jet must be close to optimal for high-energy neutrino production, and are not favorable for ultra-high-energy cosmic-ray acceleration. Alternatively, the challenges we identify in generating a significant rate of IceCube neutrino detections from TXS 0506+056 may disfavor single-zone models, in which γ-rays and high-energy neutrinos are produced in a single emission region. In concert with continued operations of the high-energy neutrino observatories, we advocate regular X-ray monitoring of TXS 0506+056 and other blazars in order to test single-zone blazar emission models, clarify the nature and extent of their hadronic acceleration processes, and carry out the most sensitive possible search for additional multimessenger sources.
Observations of gamma-ray-bursts and jets from active galactic nuclei reveal that the jet flow is characterized by a high radiative efficiency and that the dissipative mechanism must be a powerful accelerator of non-thermal particles. Shocks and magnetic reconnection have long been considered as possible candidates for powering the jet emission. Recent progress via fully-kinetic particle-in-cell simulations allows us to revisit this issue on firm physical grounds. We show that shock models are unlikely to account for the jet emission. In fact, when shocks are efficient at dissipating energy, they typically do not accelerate particles far beyond the thermal energy, and vice versa. In contrast, we show that magnetic reconnection can deposit more than 50% of the dissipated energy into non-thermal leptons as long as the energy density of the magnetic field in the bulk flow is larger than the rest mass energy density. The emitting region, i.e., the reconnection downstream, is characterized by a rough energy equipartition between magnetic fields and radiating particles, which naturally accounts for a commonly observed property of blazar jets.
We consider implications of high-energy neutrino emission from blazar flares, including the recent event IceCube-170922A and the 2014-2015 neutrino flare that could originate from TXS 0506+056. First, we discuss their contribution to the diffuse neutrino intensity taking into account various observational constraints. Blazars are likely to be subdominant in the diffuse neutrino intensity at sub-PeV energies, and we show that blazar flares like those of TXS 0506+056 could make ∼ < 1 − 10% of the total neutrino intensity. We also argue that the neutrino output of blazars can be dominated by the flares in the standard leptonic scenario for their γ-ray emission, and energetic flares may still be detected with a rate of ∼ < 1 yr −1 . Second, we consider multi-messenger constraints on the source modeling. We show that luminous neutrino flares should be accompanied by luminous broadband cascade emission, emerging also in X-rays and γ-rays. This implies that not only γ-ray telescopes like Fermi but also X-ray sky monitors such as Swift and MAXI are critical to test the canonical picture based on the single-zone modeling. We also suggest a two-zone model that can naturally satisfy the X-ray constraints while explaining the flaring neutrinos via either photomeson or hadronuclear processes.
Blobs, or quasi-spherical emission regions containing relativistic particles and magnetic fields, are often assumed ad hoc in emission models of relativistic astrophysical jets, yet their physical origin is still not well understood. Here, we employ a suite of large-scale two-dimensional particle-in-cell simulations in electron-positron plasmas to demonstrate that relativistic magnetic reconnection can naturally account for the formation of quasi-spherical plasmoids filled with high-energy particles and magnetic fields. Our simulations extend to unprecedentedly long temporal and spatial scales, so we can capture the asymptotic physics independently of the initial setup. We characterize the properties of the plasmoids that are continuously generated as a self-consistent by-product of the reconnection process: they are in rough energy equipartition between particles and magnetic fields (with kinetic and magnetic energy densities proportional to the magnetization σ); the upper energy cutoff of the plasmoid particle spectrum is proportional to the plasmoid width w, corresponding to a Larmor radius ∼ 0.2 w; the plasmoids grow in size at ∼ 0.1 of the speed of light (roughly half of the reconnection inflow rate), with most of the growth happening while they are still non-relativistic ("first they grow"); their growth is suppressed once they get accelerated to relativistic speeds by the field line tension, up to a terminal four-velocity ∼ √ σ c ("then they go"). The largest plasmoids, whose typical recurrence interval is ∼ 2.5 L/c, reach a characteristic size w max ∼ 0.2 L independently of the system length L, they have nearly isotropic particle distributions and they contain the highest energy particles, whose Larmor radius is ∼ 0.03 L. The latter can be regarded as the Hillas criterion for relativistic reconnection. We briefly discuss the implications of our results for the high-energy emission from relativistic jets and pulsar winds.
In network meta-analysis (NMA), treatments can be complex interventions, for example, some treatments may be combinations of others or of common components. In standard NMA, all existing (single or combined) treatments are different nodes in the network. However, sometimes an alternative model is of interest that utilizes the information that some treatments are combinations of common components, called component network meta-analysis (CNMA) model. The additive CNMA model assumes that the effect of a treatment combined of two components A and B is the sum of the effects of A and B, which is easily extended to treatments composed of more than two components. This implies that in comparisons equal components cancel out. Interaction CNMA models also allow interactions between the components. Bayesian analyses have been suggested. We report an implementation of CNMA models in the frequentist R package netmeta. All parameters are estimated using weighted least squares regression. We illustrate the application of CNMA models using an NMA of treatments for depression in primary care. Moreover, we show that these models can even be applied to disconnected networks, if the composite treatments in the subnetworks contain common components. K E Y W O R D S combination therapies, complex interventions, disconnected networks, multiple interventions, network meta-analysisThis is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.