Familial microscopic hematuria (FMH) is associated with a genetically heterogeneous group of conditions including the collagen-IV nephropathies, the heritable C3/CFHR5 nephropathy and the glomerulopathy with fibronectin deposits. The clinical course varies widely, ranging from isolated benign familial hematuria to end-stage renal disease (ESRD) later in life. We investigated 24 families using next generation sequencing (NGS) for 5 genes: COL4A3, COL4A4, COL4A5, CFHR5 and FN1. In 17 families (71%), we found 15 pathogenic mutations in COL4A3/A4/A5, 9 of them novel. In 5 families patients inherited classical AS with hemizygous X-linked COL4A5 mutations. Even more patients developed later-onset Alport-related nephropathy having inherited heterozygous COL4A3/A4 mutations that cause thin basement membranes. Amongst 62 heterozygous or hemizygous patients, 8 (13%) reached ESRD, while 25% of patients with heterozygous COL4A3/A4 mutations, aged >50-years, reached ESRD. In conclusion, COL4A mutations comprise a frequent cause of FMH. Heterozygous COL4A3/A4 mutations predispose to renal function impairment, supporting that thin basement membrane nephropathy is not always benign. The molecular diagnosis is essential for differentiating the X-linked from the autosomal recessive and dominant inheritance. Finally, NGS technology is established as the gold standard for the diagnosis of FMH and associated collagen-IV glomerulopathies, frequently averting the need for invasive renal biopsies.
The X-linked Alport syndrome (ATS) is caused by mutations in COL4A5 and exhibits a widely variable expression. Usually ATS is heralded with continuous microhematuria which rapidly progresses to proteinuria, hypertension and chronic or end-stage renal disease (ESRD) by adolescence, frequently accompanied by sensorineural deafness and ocular complications. Milder forms of ATS also exist. We studied 42 patients (19M, 23F) of nine Hellenic families suspected clinically of X-linked ATS who presented with marked phenotypic heterogeneity. We identified mutations in COL4A5 in six families. Two males with nonsense mutation E228X reached ESRD by ages 14 and 18. Frameshift mutation 2946delT followed the same course with early onset renal involvement and deafness. However, two males with the milder missense mutation G624D, reached ESRD after 39 years and one patient showed thin basement membrane nephropathy (TBMN). Another 5/8 affected males with missense mutation P628L also developed ESRD between 30 and 57 years, while three exhibit only mild chronic renal failure (CRF). The data support previous findings that certain mutations are associated with milder phenotypes and confirm that mutation G624D may be expressed as TBMN with familial hematuria. Similar conclusions apply for missense mutation P628L. Interestingly, mutations G624D and P628L are near the 12th natural interruption of COL4A5 triple helical domain, which may explain the milder phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.