The lateral hypothalamus (LH) controls energy balance. LH melanin-concentrating-hormone (MCH) and orexin/hypocretin (OH) neurons mediate energy accumulation and expenditure, respectively. MCH cells promote memory and appropriate stimulus-reward associations; their inactivation disrupts energy-optimal behaviour and causes weight loss. However, MCH cell dynamics during wakefulness are unknown, leaving it unclear if they differentially participate in brain activity during sensory processing. By fiberoptic recordings from molecularly defined populations of LH neurons in awake freely moving mice, we show that MCH neurons generate conditional population bursts. This MCH cell activity correlates with novelty exploration, is inhibited by stress and is inversely predicted by OH cell activity. Furthermore, we obtain brain-wide maps of monosynaptic inputs to MCH and OH cells, and demonstrate optogenetically that VGAT neurons in the amygdala and bed nucleus of stria terminalis inhibit MCH cells. These data reveal cell-type-specific LH dynamics during sensory integration, and identify direct neural controllers of MCH neurons.
SummaryIn humans and rodents, loss of brain orexin/hypocretin (OH) neurons causes pathological sleepiness [1, 2, 3, 4], whereas OH hyperactivity is associated with stress and anxiety [5, 6, 7, 8, 9, 10]. OH cell control is thus of considerable interest. OH cells are activated by fasting [11, 12] and proposed to stimulate eating [13]. However, OH cells are also activated by diverse feeding-unrelated stressors [14, 15, 16, 17] and stimulate locomotion and “fight-or-flight” responses [18, 19, 20]. Such OH-mediated behaviors presumably preclude concurrent eating, and loss of OH cells produces obesity, suggesting that OH cells facilitate net energy expenditure rather than energy intake [2, 21, 22, 23]. The relationship between OH cells and eating, therefore, remains unclear. Here we investigated this issue at the level of natural physiological activity of OH cells. First, we monitored eating-associated dynamics of OH cells using fiber photometry in free-feeding mice. OH cell activity decreased within milliseconds after eating onset, and remained in a down state during eating. This OH inactivation occurred with foods of diverse tastes and textures, as well as with calorie-free “food,” in both fed and fasted mice, suggesting that it is driven by the act of eating itself. Second, we probed the implications of natural OH cell signals for eating and weight in a new conditional OH cell-knockout model. Complete OH cell inactivation in adult brain induced a hitherto unrecognized overeating phenotype and caused overweight that was preventable by mild dieting. These results support an inhibitory interplay between OH signals and eating, and demonstrate that OH cell activity is rapidly controllable, across nutritional states, by voluntary action.
The lateral hypothalamus (LH) is a key regulator of multiple vital behaviors. The firing of brain-wide-projecting LH neurons releases neuropeptides promoting wakefulness (orexin/hypocretin; OH), or sleep (melanin-concentrating hormone; MCH). OH neurons, which coexpress glutamate and dynorphin, have been proposed to excite their neighbors, including MCH neurons, suggesting that LH may sometimes coengage its antagonistic outputs. However, it remains unclear if, when, and how OH actions promote temporal separation of the sleep and wake signals, a process that fails in narcolepsy caused by OH loss. To explore this directly, we paired optogenetic stimulation of OH cells (at rates that promoted awakening in vivo) with electrical monitoring of MCH cells in mouse brain slices. Membrane potential recordings showed that OH cell firing inhibited action potential firing in most MCH neurons, an effect that required GABA A but not dynorphin receptors. Membrane current analysis showed that OH cell firing increased the frequency of fast GABAergic currents in MCH cells, an effect blocked by antagonists of OH but not dynorphin or glutamate receptors, and mimicked by bath-applied OH peptide. In turn, neural network imaging with a calcium indicator genetically targeted to MCH neurons showed that excitation by bath-applied OH peptides occurs in a minority of MCH cells. Collectively, our data provide functional microcircuit evidence that intra-LH feedforward loops may facilitate appropriate switching between sleep and wake signals, potentially preventing sleep disorders.
BNN27, a C17-spiroepoxy derivative of DHEA, was shown to have antiapoptotic properties via mechanisms involving the nerve growth factor receptors (tropomyosin-related kinase A [TrkA]/neurotrophin receptor p75 [p75]). In this study, we examined the effects of BNN27 on neural/glial cell function, apoptosis, and inflammation in the experimental rat streptozotocin (STZ) model of diabetic retinopathy (DR). The ability of BNN27 to activate the TrkA receptor and regulate p75 expression was investigated. BNN27 (2,10, and 50 mg/kg i.p. for 7 days) administration 4 weeks post-STZ injection (paradigm A) reversed the diabetes-induced glial activation and loss of function of amacrine cells (brain nitric oxide synthetase/tyrosine hydroxylase expression) and ganglion cell axons via a TrkA receptor (TrkAR)-dependent mechanism. BNN27 activated/phosphorylated the TrkA residue in the absence but not the presence of TrkAR inhibitor and abolished the diabetes-induced increase in p75 expression. However, it had no effect on retinal cell death (TUNEL cells). A similar result was observed when BNN27 (10 mg/kg i.p.) was administered at the onset of diabetes, every other day for 4 weeks (paradigm B). However, BNN27 decreased the activation of caspase-3 in both paradigms. Finally, BNN27 reduced the proinflammatory (TNFα and IL-1β) and increased the anti-inflammatory (IL-10 and IL-4) cytokine levels. These findings suggest that BNN27 has the pharmacological profile of a therapeutic for DR, since it targets both the neurodegenerative and inflammatory components of the disease.
The behavioral strategies that mammals use to learn multi-step routes in natural settings are unknown.Here we show that mice spontaneously adopt a subgoal memory strategy. We first investigated how mice navigate to shelter in response to threats when the direct path is blocked. Initially, they fled toward the shelter and negotiated obstacles using sensory cues. Within twenty minutes, they adopted a subgoal strategy, initiating escapes by running directly to the obstacle's edge. Mice continued to target this subgoal location after the obstacle was removed, indicating use of spatial memory. However, standard models of spatial learningegocentric-movement repetition and internal-map buildingdid not explain how subgoal memories formed.Instead, mice used a hybrid approach: memorizing salient locations encountered during spontaneous 'practice runs'. This strategy was also used during geometrically identical reward-seeking behavior. These results suggest that subgoal memorization is a fundamental strategy by which rodents learn efficient multi-step routes in new environments.learned by observing the structure of the environment, and it depends on the hippocampus 11 . Alternatively, animals can navigate to goals without relying on an internal map. These strategies include integrating self-motion cues to compute a vector back to their starting position 12 ; repeating egocentric movements at familiar junctions 13,14 ; and using landmarks for visual guidance 15 . The latter two tactics, known as "taxon" strategies, are inflexible, rely on proximal cues, and are learned through previous motivated actions 11 . Despite all that is known about rodent navigation, the behavioral strategies that animals spontaneously use to quickly build up and deploy spatial knowledge in new environments remain unknown. The abilities listed above have mostly been demonstrated by repeatedly placing rodents in constrained mazes until they learn to navigate to a goal. In a natural setting, however, spatial learning must occur via internally generated exploration patterns and within a very limited timeframe. It is therefore unclear how well previous classifications of navigation strategies map onto the instincts and learning procedures that animals use during natural goal-directed navigation.Escape behavior offers a powerful model for studying naturalistic navigation in the laboratory. Diverse animals, including fishes, lizards, crabs, birds, and rodents, respond to threats by escaping to a familiar shelter 16 . Mice are known to rapidly identify and memorize shelter locations in new environments and instinctively respond to visual or auditory threats by running straight to the shelter 17,18 . Previous studies have shown that the spatial memory for running back to shelter ('homing') can be based on path integration or distal visual landmarks when a direct path is available 17,[19][20][21] . If the direct path is blocked on one side by a barrier, previous work has shown that gerbils can use spatial memory to reach the hidden shelter after a brief perio...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.