Resistance training and detraining may alter leptin and adiponectin responses in an intensity-dependent manner. Leptin and adiponectin changes were strongly associated with RMR and anthropometric changes.
OBJECTIVETo evaluate the time course of leptin, adiponectin, and resting energy expenditure (REE) responses in overweight elderly males after acute resistance exercise protocols of various intensity configurations.RESEARCH DESIGN AND METHODSForty inactive men (65–82 years) were randomly assigned to one of four groups (n = 10/group): control, low-intensity resistance exercise, moderate-intensity resistance exercise, and high-intensity resistance exercise. Exercise energy cost, REE, leptin, adiponectin, cortisol, insulin, lactate, glucose, nonesterified fatty acids (NEFAs), and glycerol were determined at baseline, immediately after exercise, and during a 72-h recovery period.RESULTSExercise energy cost was lower in high-intensity than in low-intensity and moderate-intensity groups (221.6 ± 8.8 vs. 295.6 ± 10.7 and 281.6 ± 9.8 kcal, P < 0.001). Lactate, glucose, NEFAs, and glycerol concentrations increased (P < 0.001) after exercise and returned to baseline thereafter in all groups. REE increased (P < 0.001) in all groups at 12 h in an intensity-dependent manner (P < 0.05). REE reached baseline after 48 h in the low- and moderate-intensity groups and after 72 h in the high-intensity group. Cortisol peaked in all active groups after exercise (P < 0.001) and remained elevated (P < 0.001) for 12 h. After adjustment for plasma volume shifts, leptin remained unaltered. Adiponectin concentration increased after 12 h and remained elevated for 24 h only in the high-intensity group (P < 0.001).CONCLUSIONSResistance exercise does not alter circulating leptin concentration but does increase REE and adiponectin in an intensity-dependent manner for as long as 48 and 24 h, respectively, in overweight elderly individuals. It appears that resistance exercise may represent an effective approach for weight management and metabolic control in overweight elderly individuals.
Aims. The Aim of the present study was to examine whether there is a relationship between autonomic nervous system function and glycemic variability (GV) in patients with type 2 diabetes (T2D). Methods. A total of 50 (29 males) patients with T2D (mean age 58.4 ± 9.9 years, median diabetes duration 5.5 [IQR 2.0–9.25] years), on oral antidiabetic agents, underwent ECG recording and subcutaneous glucose monitoring, simultaneously and continuously, for 24 hours. Results. After adjustment for HbA1c and diabetes duration, total power of heart rate variability (HRV) was inversely associated with the standard deviation of the mean interstitial tissue glucose (MITG) and with the M-value during the entire recording (r: −0.29, P = 0.052; r: −0.30, P = 0.047, resp.) and during the night (r: −0.29, P = 0.047; r: −0.31, P = 0.03, resp.). Most of the HRV time-domain indices were significantly correlated with standard deviation of the MITG and the M-value. These correlations were stronger for the HRV recordings during the night. No significant association was found between HRV parameters and MAGE. Conclusions. HRV is inversely associated with GV in patients with T2D, which might be a sign of causation between GV and autonomic dysfunction. Prospective studies are needed to further investigate the importance of GV in the pathogenesis of long-term complications of diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.