The analysis and generalization of the results of studies of high-voltage electrochemical explosions (HVECHE) proceeding under various conditions, driven by special aspects and needs of the existing HVECHE based pulse-discharge technologies, was carried out. A methodology to calculate combined energy sources is proposed in relation to the needs of various discharge-pulse technologies using a high-voltage electrochemical explosion. Based on the analysis of the results of experimental studies, the advantage of using a high-voltage electrochemical explosion with a controlled input of electrical energy into the discharge channel was substantiated. An algorithm was developed to calculate the parameters of a combined electric-discharge source of a controlled HVECHE and the required mass of the exothermic composition which provides the energy characteristics specified by a specific discharge-pulse technology. The results of testing the developed calculation algorithm are presented confirming the possibility of its use for engineering calculations of combined power sources with a controlled input of electrical energy into the discharge channel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.