Progress in the definition of the requirements for edge localized mode (ELM) control and the application of ELM control methods both for high fusion performance DT operation and non-active low-current operation in ITER is described. Evaluation of the power fluxes for low plasma current H-modes in ITER shows that uncontrolled ELMs will not lead to damage to the tungsten (W) divertor target, unlike for high-current H-modes in which divertor damage by uncontrolled ELMs is expected. Despite the lack of divertor damage at lower currents, ELM control is found to be required in ITER under these conditions to prevent an excessive contamination of the plasma by W, which could eventually lead to an increased disruptivity. Modelling with the non-linear MHD code JOREK of the physics processes determining the flow of energy from the confined plasma onto the plasma-facing components during ELMs at the ITER scale shows that the relative contribution of conductive and convective losses is intrinsically linked to the magnitude of the ELM energy loss. Modelling of the triggering of ELMs by pellet injection for DIII-D and ITER has identified the minimum pellet size required to trigger ELMs and, from this, the required fuel throughput for the application of this technique to ITER is evaluated and shown to be compatible with the installed fuelling and tritium re-processing capabilities in ITER. The evaluation of the capabilities of the ELM control coil system in ITER for ELM suppression is carried out (in the vacuum approximation) and found to have a factor of ∼2 margin in terms of coil current to achieve its design criterion, although such a margin could be substantially reduced when plasma shielding effects are taken into account. The consequences for the spatial distribution of the power fluxes at the divertor of ELM control by three-dimensional (3D) fields are evaluated and found to lead to substantial toroidal asymmetries in zones of the divertor target away from the separatrix. Therefore, specifications for the rotation of the 3D perturbation applied for ELM control in order to avoid excessive localized erosion of the ITER divertor target are derived. It is shown that a rotation frequency in excess of 1 Hz for the whole toroidally asymmetric divertor power flux pattern is required (corresponding to n Hz frequency in the variation of currents in the coils, where n is the toroidal symmetry of the perturbation applied) in order to avoid unacceptable thermal cycling of the divertor target for the highest power fluxes and worst toroidal power flux asymmetries expected. The possible use of the in-vessel vertical stability coils for ELM control as a back-up to the main ELM control systems in ITER is described and the feasibility of its application to control ELMs in low plasma current H-modes, foreseen for initial ITER operation, is evaluated and found to be viable for plasma currents up to 5-10 MA depending on modelling assumptions.
As part of the ITER Design Review, the physics requirements were reviewed and as appropriate updated. The focus of this paper will be on recent work affecting the ITER design with special emphasis on topics affecting near-term procurement arrangements. This paper will describe results on: design sensitivity studies, poloidal field coil requirements, vertical stability, effect of toroidal field ripple on thermal confinement, heat load requirements for plasma-facing components, edge localized modes control, resistive wall mode control, disruptions and disruption mitigation.
Operating ITER in the reference inductive scenario at the design values of I P = 15 MA and Q DT = 10 requires the achievement of good H-mode confinement that relies on the presence of an edge transport barrier whose pedestal pressure height is key to plasma performance. Strong gradients occur at the edge in such conditions that can drive MHD instabilities resulting in Edge Localized Modes (ELMs), which produce a rapid energy loss from the pedestal region to the plasma facing components. Without appropriate control, the heat loads on plasma facing components during ELMs in ITER are expected to become significant for operation in H-mode at I P = 6 -9 MA; operation at higher plasma currents would result in a very reduced life time of the plasma facing components. Currently, several options are being considered for the achievement of the required level of ELM control in ITER; this includes operation in plasma regimes which naturally have no or very small ELMs, decreasing the ELM energy loss by increasing their frequency by a factor of up to 30 and avoidance of ELMs by actively controlling the edge with magnetic perturbations. Small/no ELM regimes obtained by influencing the edge stability (by plasma shaping, rotational shear control, etc.) have shown in present experiments a significant reduction of the ELM heat fluxes compared to type-I ELMs. However, so far they have only been observed under a limited range of pedestal conditions depending on each specific device and their extrapolation to ITER remains uncertain. ELM control by increasing their frequency relies on the controlled triggering of the edge instability leading to the ELM. This has been 2 presently demonstrated with the injection of pellets and with plasma vertical movements; pellets having provided the results more promising for application in ITER conditions. ELM avoidance/suppression takes advantage of the fact that relatively small changes in the pedestal plasma and magnetic field parameters seem to have a large stabilizing effect on large ELMs. Application of edge magnetic field perturbation with non-axisymmetric fields is found to affect transport at the plasma edge and thus prevent the uncontrolled rise of the plasma pressure gradients and the occurrence of type-I ELMs. This paper compiles a brief overview of various ELM control approaches, summarizes their present achievements and briefly discusses the open issues regarding their application in ITER. IntroductionThe main goal of current research in the field of magnetically confined plasmas aiming for power generation by nuclear fusion is to optimize high confinement plasma regimes (Hmode) in order to achieve the maximum plasma energy for a given input heating power P in . Thus, in future fusion devices such as the ITER tokamak, which is expected to produce considerable amounts of fusion power P fus , the gain or amplification factor Q = P fus /P in requires to be maximized as well. High confinement H-mode plasmas are characterized by the existence of an Edge Transport Barrier (ETB) in a ...
Abstract. The poloidal field (PF) coil system on ITER, which provides both feedforward and feedback control of plasma position, shape, and current, is a critical element for achieving mission performance. Analysis of PF capabilities has focused on the 15 MA Q = 10 scenario with a 300-500 s flattop burn phase. The operating space available for the 15 MA ELMy H-mode plasma discharges in ITER and upgrades to the PF coils or associated systems to establish confidence that ITER mission objectives can be reached have been identified. Time dependent self-consistent free-boundary calculations were performed to examine the impact of plasma variability, discharge programming, and plasma disturbances. Based on these calculations a new reference scenario was developed based upon a large bore initial plasma, early divertor transition, low level heating in L-mode, and a late H-mode onset. Equilibrium analyses for this scenario indicate that the original PF coil limitations do not allow low l i (<0.8) operation or lower flux states, and the flattop burn durations were predicted to be less than the desired 400 s. This finding motivates the expansion of the operating space, considering several upgrade options to the PF coils. Analysis was also carried out to examine the feedback current reserve required in the CS and PF coils during a series of disturbances and a feasibility assessment of the 17 MA scenario was undertaken. Results of the studies show that the new scenario and modified PF system will allow a wide range of 15 MA 300-500 s operation and more limited but finite 17 MA operation.
Sustainment of Q ∼ 10 operation with a fusion power of ∼500 MW for several hundred seconds is a key mission goal of the ITER Project. Past calculations and simulations predict that these conditions can be produced in high-confinement mode operation (H-mode) at 15 MA relying on only inductive current drive. Earlier development of 15 MA baseline inductive plasma scenarios provided a focal point for the ITER Design Review conducted in 2007–2008. In the intervening period, detailed predictive simulations, supported by experimental demonstrations in existing tokamaks, allow us to assemble an end-to-end specification of this scenario consistent with the final design of the ITER device. Simulations have encompassed plasma initiation, current ramp-up, plasma burn and current ramp-down, and have included density profiles and thermal transport models producing temperature profiles consistent with edge pedestal conditions present in current fusion experiments. These quasi-stationary conditions are maintained due to the presence of edge-localized modes that limit the edge pressure. High temperatures and densities in the pedestal region produce significant edge bootstrap current that must be considered in modelling of feedback control of shape and vertical stability. In this paper we present new results of transport simulations fully consistent with the final ITER design that remain within allowed limits for the coil system and power supplies. These self-consistent simulations increase our confidence in meeting the challenges of the ITER program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.