Lava dome eruptions commonly display fairly regular alternations between periods of high activity and periods of low or no activity. The time scale for these alternations is typically months to several years. Here we develop a generic model of magma discharge through a conduit from an open-system magma chamber with continuous replenishment. The model takes account of the principal controls on flow, namely the replenishment rate, magma chamber size, elastic deformation of the chamber walls, conduit resistance, and variations of magma viscosity, which are controlled by degassing during ascent and kinetics of crystallization. The analysis indicates a rich diversity of behavior with periodic patterns similar to those observed. Magma chamber size can be estimated from the period with longer periods implying larger chambers. Many features observed in volcanic eruptions such as alternations between periodic behaviors and continuous discharge, sharp changes in discharge rate, and transitions from effusive to catastrophic explosive eruption can be understood in terms of the non-linear dynamics of conduit flows from open-system magma chambers. The dynamics of lava dome growth at Mount St. Helens (1980^1987) and Santiaguito (1922^2000) was analyzed with the help of the model. The best-fit models give magma chamber volumes of V0.6 km 3 for Mount St. Helens and V65 km 3 for Santiaguito. The larger magma chamber volume is the major factor in explaining why Santiaguito is a long-lived eruption with a longer periodicity of pulsations in comparison with Mount St. Helens. ß
We develop a model for explosive eruptions in cylindrical conduits generated by plug disruption at the top of the conduit. The eruption is calculated for a standard set of parameters for rhyolite. The model takes into account temperature variations and non-Newtonian magma rheology. We analyzed the influence of principal parameters such as fragmentation criteria, magma rheology, and initial conditions. We conclude that the variation of magma temperature is less than 70 K during eruption, and the model with bubble concentration-dependent viscosity leads to the increase of the steady discharge rate by about 40%. The eruption model is extended to include interaction between magma in the conduit and water in a surrounding aquifer. The phreatomagmatic eruption is also initiated by plug disruption. Two cases of initial aquifer pressure are considered: magmastatic and hydrostatic. These cases are valid for confined and unconfined aquifers. For the first case (confined aquifer), water influx influences the conduit flow soon after plug disruption and leads to the additional peaks of discharge rate; for the second case (unconfined aquifer), a purely magmatic, explosive eruption of longer duration is followed by a phreatomagmatic phase. In both cases, magma discharge rate increases by 10-100% in comparison with purely magmatic eruption.
[1] Most models for magma flow in volcanic conduits during explosive eruptions assume isothermal ascent conditions due to the high heat capacity of the magma. Here we present a non-isothermal axisymmetrical flow model that accounts for the temperature-dependent viscosity of magma and viscous dissipation of heat. Significant changes in velocity and temperature profiles result in strong reduction of the conduit friction leading to an order of magnitude increase in discharge rate in comparison with the isothermal case. This allows high intensity eruptions to occur from significantly narrower volcanic conduits and so helps to resolve inconsistencies between conduit dimensions inferred from models and observations. For a given conduit diameter fragmentation can occur at much shallow depths than for an isothermal model. Citation: Vedeneeva, E. A.,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.