Possible etiological factors of this disease include obesity, congenital malformations of the skull base, an overpneumatized sphenoid sinus (particularly in its lateral extensions), and the empty sella syndrome. Endoscopic endonasal repair of spontaneous CSF rhinorrhea appears to be a safe and successful procedure. However, techniques for endoscopic closure of CSF fistulas in the lateral part of the sphenoid sinus need further perfecting.
Real-time feedback about dissected tissue during the neurosurgical procedure is strongly requested. A novel direct ionization mass spectrometric method for identifying pathological differences in tissues is proposed. The method is based on simultaneous extraction of tissue lipids and electrospray ionization which allows mass spectrometric data to be obtained directly from soft tissues. The advantage of this method is the stable flow of solvent, which leads to stable time-dependent spectra. The tissues included necrotized tissues and tumor tissues in different combinations. Capability for direct analysis of samples of dissected tissues during the neurosurgical procedure is demonstrated. Data validation is conducted by compound identification using precise masses from the MS profile, MS/MS, and isotopic distribution structure analysis. The method can be upgraded and applied for real-time identification of tissues during surgery. This paper describes the technique and its application perspective. For these purposes, other methods were compared with the investigated one and the results were shown to be reproducible. Differences in lipid profiles were observed even in tissues from one patient where distinctions between different samples could be poor. The paper presents a proof of concept for the method to be applied in neurosurgery particularly and in tissue analysis generically. The paper also contains preliminary results proving the possibility of observing differences in mass spectra of different tumors.
Terahertz (THz) technology offers novel opportunities in the intraoperative neurodiagnosis. Recently, the significant progress was achieved in the study of brain gliomas and intact tissues, highlighting a potential for THz technology in the intraoperative delineation of tumor margins. However, a lack of physical models describing the THz dielectric permittivity of healthy and pathological brain tissues restrains the further progress in this field. In the present work, the ex vivo THz dielectric response of human brain tissues was analyzed using relaxation models of complex dielectric permittivity. Dielectric response of tissues was parametrized by a pair of the Debye relaxators and a pair of the overdamped-oscillators – namely, the double-Debye (DD) and double-overdamped-oscillator (DO) models. Both models accurately reproduce the experimental curves for the intact tissues and the WHO Grades I–IV gliomas. While the DD model is more common for THz biophotonics, the DO model is more physically rigorous, since it satisfies the sum rule. In this way, the DO model and the sum rule were, then, applied to estimate the content of water in intact tissues and gliomas ex vivo. The observed results agreed well with the earlier-reported data, justifying water as a main endogenous label of brain tumors in the THz range. The developed models can be used to describe completely the THz-wave – human brain tissues interactions in the frameworks of classical electrodynamics, being quite important for further research and developments in THz neurodiagnosis of tumors.
Protoporphyrin IX (PpIX) is widely used in photodynamic diagnosis. To date, the details of molecular mechanisms underlying PpIX accumulation in malignant cells after 5-ALA administration remain unclear. The fluorescence of PpIX was studied in human glioma cells. Several cell cultures were established from glioma tumor tissue to study the differences between fluorescence-positive and fluorescence-negative human glioma tumors. The cell cultures demonstrated fluorescence profiles similar to those of source tumor tissues, which allows us to use these cultures in experimental research. Dynamics of the rates of synthesis and degradation of fluorescent protoporphyrin IX was studied in the cultures obtained. In addition, the expression of CPOX, an enzyme involved in PpIX synthesis, was evaluated. mRNA levels of heme biosynthesis enzymes were analyzed, and PpIX fluorescence proved to correlate with the CPOX protein level, whereas no such correlation was observed at the mRNA level. Fluorescence intensity decreased at low levels of the enzyme, which indicates its critical role in PpIX fluorescence. Finally, the fluorescence intensity proved to correlate with the proliferative activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.