Высокая плотность структурных дефектов является основной проблемой при изготовлении электроники на гетероструктурах «кремний на сапфире» (КНС). Современный метод получения ультратонких структур КНС с помощью твердофазной эпитаксиальной рекристаллизации позволяет значительно снизить дефектность в гетероэпитаксиальном слое КНС. В данной работе ультратонкие (100 нм) слои КНС были получены путем рекристаллизации и утонения субмикронных (300 нм) слоев кремния на сапфире, обладающих различным структурным качеством. Плотность структурных дефектов в слоях КНС оценивалась с помощью рентгеноструктурного анализа и просвечивающей электронной микроскопии. Кривые качания от дифракционного отражения Si(400), полученные в ω-геометрии, продемонстрировали максимальную ширину на полувысоте пика не более 0,19-0,20° для ультратонких слоев КНС толщиной 100 нм. Формирование структурно совершенного субмикронного слоя КНС 300 нм на этапе газофазной эпитаксии обеспечивает существенное уменьшение плотности дислокаций в ультратонком кремнии на сапфире до значений ~1 • 104 см-1. Тестовые n-канальные МОП-транзисторы на ультратонких структурах КНС характеризовались подвижностью носителей в канале 725 см2 Вс-1.
The high density of structural defects is the main problem on the way to the production of electronics on silicon-on-sapphire (SOS) heteroepitaxial wafers. The modern method of obtaining ultrathin SOS wafers is solid-phase epitaxial recrystallization which can significantly reduce the density of defects in the SOS heteroepitaxial layers. In the current work, ultrathin (100 nm) SOS layers were obtained by recrystallization and thinning of submicron (300 nm) SOS layers, which have various structural quality. The density of structural defects in the layers was estimated by using XRD and TEM. Full width at half maximum of rocking curves (ω-geometry) was no more than 0.19-0.20° for 100 nm ultra-thin SOS layers. The structural quality of 300 nm submicron SOS layers, which were obtained by CVD, depends on dislocation density in 100 nm ultrathin layers. The dislocation density in ultrathin SOS layers was reduced by ~1 • 104 cm-1 due to the utilization of the submicron SOS with good crystal quality. Test n-channel MOS transistors based on ultra-thin SOS wafers were characterized by electron mobility in the channel 725 cm2 V-1 s-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.