The entire cycle of strength tests of the aircraft structure requires large expenditures of time and effort attributed to the manufacture of two full-size aircraft structures and two test rigs. The pace of development of modern aviation technology dictates strict requirements for timing and quality of testing, which allows us to ensure competitiveness in the world aircraft market. Therefore, when conducting a full cycle tests, shortening of the testing period becomes of particular importance. We consider a novel approach to strength testing of a full-scale transport aircraft structure which consists in static and fatigue tests carried out on the same object. The developed approach was tried out when testing the full-scale wing structure of a transport aircraft. The tests were carried out on a set-up that allowed reproducing both cases of static loading and variable loads of flight cycles. At the first stage, the static strength was proved by the results of finite-element calculation of the stress state of the structure at ultimate loads using a model verified by the strain measurements of one of the wing consoles under limit loads, as well as by testing typical and critical airframe elements. Samples of full-scale panels were additionally tested for buckling to confirm the load capacity of the upper wing panels. Fatigue tests were carried out in the time span of two design service life. The obtained results showed the possibility of conducting both static and fatigue tests using one and the same full-scale aircraft structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.