Electrochemical deposition of cobalt onto the single-layer CVD graphene draw to the formation of Co-CoO/graphene composites with increased electrical resistance and magnetoresistance. It is shown that magnetoresistance is governed with two competing mechanisms – negative (NMR) and positive (PMR). NMR at low magnetic fields could be well described with localized quantum corrections to the Drude conductivity in graphene. The enhancement of PMR at high magnetic fields could be associated with the influence of Lorentz mechanism in Co-CoO particles.
The relationship between sp^2/sp^3 hybridizations ratio of atomic bonds in diamond-like carbon (DLC) and its electrical resistivity for coatings with a thickness in the range 22-70 nm prepared by vacuum arc deposition on silicon substrate of the SHB-8 brand has been established. It is established, that an increase in the coating thickness from 22 to 70 nm is accompanied by a decrease in the specific transverse electrical resistance of samples from 17 to 2 GOhm·m. This effect is explained by an increase in the proportion of carbon atoms with sp^2 hybridization of electronic orbitals from 86 to 91%, which leads to the appearance of an additional number of π-bonds. A mathematical model, describing the spatial distribution of current when measuring transverse I-V characteristic, has been developed. The results obtained will be useful in creating resistive layers on the electrodes of gas-discharge detectors of charged particle to limit the amount of current in the event of rare spark discharges inside them caused by the registration of random highly ionizing particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.