New TiNb-based alloys, such as Ti–6Al–7Nb, are currently being studied around the world as an alternative to other Ti alloys, e.g., instead of Ti–6Al–4V. We conducted a pilot study where thin (approximately 1.2 micron) CaP coatings containing low doses of Zn2+ (0.4–0.8 wt.%) were prepared by the radio frequency magnetron sputtering (RFMS) of Zn-hydroxyapatite (HA) target on Ti–6Al–4V and Ti–6Al–7Nb substrates and investigated their physicochemical properties, in vitro solubility, cytotoxicity, and antibacterial and osteogenic activities. The thickness of the obtained coatings was approximately 1.2–1.3 microns. Zn substitution did not result in roughness or structural or surface changes in the amorphous CaP coatings. The distributions of Ca, P, and Zn were homogeneous across the film thickness as shown by the EDX mapping of these elements. Zn doping of CaP coatings on both types of Ti-based alloys statistically influenced the results of the scratch-test. However, obtained values are satisfactory to use Zn-CaP coatings on biomedical implants. Increased Zn2+ release vs. tapered output of Ca and phosphate ions occurred during 5 weeks of an in vitro immersion test in 0.9% NaCl solution. Ti–6Al–7Nb alloy, unlike Ti–6Al–4V, promoted more linear biodegradation of CaP coatings in vitro. As a result, CaP-based surfaces on Ti–6Al–7Nb, compared with on Ti–6Al–4V alloy, augmented the total areas of Alizarin red staining in a 21-day culture of human adipose-derived mesenchymal stem cells in a statistically significant manner. Moreover, Zn–CaP coatings statistically reduced leukemic Jurkat T cell survival within 48 h of in vitro culture. Along with the higher solubility of the Zn–CaP surface, a greater reduction (4- to 5.5-fold) in Staphylococcus aureus growth was observed in vitro when 7-day extracts of the coatings were added into the microbial culture. Hence, Zn–CaP-coated Ti–6Al–7Nb alloy with controllable biodegradation as prepared by RFMS is a prospective material suitable for bone applications in cases where there is a risk of bacterial contamination with severe consequences, for example, in leukemic patients. Further research is needed to closely investigate the mechanical features and pathways of their solubility and antimicrobial, antitumor, and osteogenic activities.
The market of medical devices demanding new products for treatment of bone fractures. The demand is growing due to aging population and increased physical activity in senior people. We introduce newly developed implants – intramedullary fixators made from a set of biocompatible alloys including commercially pure titanium, Ti-6Al-7Nb and magnesium-based alloy. Surface of these implants is modified by Zn- or Cu-substituted hydroxyapatites coatings deposited by RF magnetron sputtering in order to diminish the risk of post-operative infection. The amorphous layers were deposited on the surface of biocompatible substrates for all deposition runs. Post-deposition annealing in air at the temperature of 700°C allowed us to crystallize coating in a way that the main hydroxyapatite peaks are well defined and lattice parameters calculated proving Zn2+ and Cu2+ substitution. The bacteriostatic effect of the coatings against the pathogenic strain 209P of Staphylococcus aureus was shown in vitro independent on the material of the metallic substrate
Aim: to review current scientific literature concerning the main advances and problems of magnesium (Mg) alloys for traumatology and orthopedics. Methodology of the study. Analytical review based the comprehensive investigation of public scientific and technological sources. Results of the study. Modern knowledge about classification, in vitro and in vivo biodegradation, biomechanics, local and general biocompatibilities, clinical efficacy, and hazards of infectious complications in conditions of osteosynthesis with implants made of Mg alloys with or without protective (anticorrosion and antimicrobial) coatings is presented. Conclusion. Fast degradation and a risk of periprosthetic infection strongly limit clinical application of implants made of Mg and its alloys. Development of novel Mg alloys and their modification by incorporating antimicrobial elements into their body or protective coating is a promising direction to control biomedical characteristics of Mg alloys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.