The emerging field of nanomagnonics utilizes high-frequency waves of magnetization-spin waves-for the transmission and processing of information on the nanoscale. The advent of spin-transfer torque has spurred significant advances in nanomagnonics, by enabling highly efficient local spin wave generation in magnonic nanodevices. Furthermore, the recent emergence of spin-orbitronics, which utilizes spin-orbit interaction as the source of spin torque, has provided a unique ability to exert spin torque over spatially extended areas of magnonic structures, enabling enhanced spin wave transmission. Here, it is experimentally demonstrated that these advances can be efficiently combined. The same spin-orbit torque mechanism is utilized for the generation of propagating spin waves, and for the long-range enhancement of their propagation, in a single integrated nanomagnonic device. The demonstrated system exhibits a controllable directional asymmetry of spin wave emission, which is highly beneficial for applications in nonreciprocal magnonic logic and neuromorphic computing.
We experimentally demonstrate generation of coherent propagating magnons in ultrathin magnetic-insulator films by spin-orbit torque induced by dc electric current. We show that this challenging task can be accomplished by utilizing magnetic-insulator films with large perpendicular magnetic anisotropy. We demonstrate simple and flexible spin-orbit torque devices, which can be used as highly efficient nanoscale sources of coherent propagating magnons for insulator-based spintronic applications.
We use space-resolved magneto-optical spectroscopy to study the influence of spin Hall effect on the excitation and propagation of spin waves in microscopic magnonic waveguides. We find that the spin Hall effect not only increases the spin-wave propagation length, but also results in an increased excitation efficiency due to the increase of the dynamic susceptibility in the vicinity of the inductive antenna. We show that the efficiency of the propagation length enhancement is strongly dependant on the type of the excited spin-wave mode and its wavelength.
Pure spin currents provide the possibility to control the magnetization state of conducting and insulating magnetic materials. They allow one to increase or reduce the density of magnons, and achieve coherent dynamic states of magnetization reminiscent of the Bose–Einstein condensation. However, until now there was no direct evidence that the state of the magnon gas subjected to spin current can be treated thermodynamically. Here, we show experimentally that the spin current generated by the spin-Hall effect drives the magnon gas into a quasi-equilibrium state that can be described by the Bose–Einstein statistics. The magnon population function is characterized either by an increased effective chemical potential or by a reduced effective temperature, depending on the spin current polarization. In the former case, the chemical potential can closely approach, at large driving currents, the lowest-energy magnon state, indicating the possibility of spin current-driven Bose–Einstein condensation.
We experimentally study nanowire-shaped spin-Hall nano-oscillators based on nanometer-thick epitaxial films of Yttrium Iron Garnet grown on top of a layer of Pt. We show that, although these films are characterized by significantly larger magnetic damping in comparison with the films grown directly on Gadolinium Gallium Garnet, they allow one to achieve spin current-driven auto-oscillations at comparable current densities, which can be an indication of the better transparency of the interface to the spin current. These observations suggest a route for improvement of the flexibility of insulator-based spintronic devices and their compatibility with semiconductor technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.