The application of high-temperature superconductor resistors (HTSC resistors) in ac electrical equipment and networks has been considered to protect them from fault currents and single-phase to earth faults. To improve the response speed and thermal withstand capability of HTSC fault current limiters the use of a stable overloaded regime in composite HTSC wires has been proposed. Basic circuits has been developed for the application of stabilized HTSC wires of low-ohmic value in protective resistors for ac networks that enables to increase the apparent resistance in the circuit by few orders of magnitude. The results are given of measurements of characteristics of first generation HTSC wires with high critical parameters in resistive state in a wide range of overcurrent. Prototype instantaneous current limiters with high thermal capability using the HTSC protective resistors have been manufactured and tested. The estimated values are given for the design parameters of the HTSC protective resistors applicable in electrical networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.