We have calculated the exciton fine structure splittings (FSS) of asymmetric GaAs/AlGaAs quantum dots (QDs) obtained after Al droplet epitaxy and subsequent nanoholes formation followed by annealing and GaAs filling of nanoholes. We used a k • p model and considered the heavy-hole and light-hole mixing to calculate the electron-hole exchange interaction (EI). The two components, long-range (LR) and short-range (SR) of the EI, were deduced. The exciton fine structure is organized, as usual in zinc-blende compounds, into two groups of states: bright (optically active) and dark states. The bright-dark and bright-bright splittings contain LR and SR contributions, the LR part representing 5 to 68% of the total bright-dark splitting and 69 to 76% of the total bright-bright splitting for sizes experimentally explored. In QDs having C 2v symmetry, LR and SR contributions to dark-dark splitting have to be calculated at the second order of perturbation theory. A good agreement between the theory and experiment is obtained for QDs with different degrees of asymmetry, from QD having an isotropic shape to QD with a very anisotropic shape.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.