Doping of group II-VI semiconductors and low-dimensional structures based on them with manganese leads to effective quenching of electro-and photoluminescence provided that the electron excitation energy of the crystal exceeds the energy of the intracenter transition of Mn2+ EMn и 2.1 eV. Quenching involves efficient energy transfer from the photoexcited crystal to Mn2 + ions. There are three possible mechanisms of this non-radiative energy transfer: dipole-dipole, exchange and related mechanism associated with sp-d mixing. Although the dipole-dipole mechanism is thought to be ineffective due to the forbidden intracenter transition in Mn2+, and the spin-dependent exchange mechanism is dominant, not all experimental facts accumulated to date supports this conclusion. The article discusses two experimental approaches to identify the dominant mechanism of energy transfer to Mn2 + ions and to evaluate the partial contributions of the mechanisms. One of these approaches is related to optically detectable magnetic resonance at single diluted magnetic semiconductor quantum dots (QD), the second - to plasmon amplification of energy transfer to Mn2 + ions by means of dipole-dipole interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.