Фундаментальные исследования в практической медицине на современном этапеВведение Среди выявленных в настоящее время 33 групповых эритроцитарных систем система резус является самой полиморфной. Она состоит из 59 антигенов и более 200 аллелей. Антигены системы Резус кодируются 2 гена-ми -RHD и RHCE, расположенными на коротком пле-че хромосомы 1 (1p34.3-1p36.1) и имеющими 10 экзонов [1]. Эти гены расположены на малом расстоянии друг от друга и навстречу друг другу {RHCE (5'->3')-(3'<5') RHD}, имеют высокую степень гомологии -до 98 %, что может приводить к обменам гомологич-ными участками -генной конверсии, кроссинговеру, способствующим формированию гибридных генов. Ген RHD фланкирован 2 «резусными боксами» -по-в торяющимися последовательностями в 9000 пар осно-ваний и гомологией в 98,6 % [2]. Гены RHD и RHCE определяют биосинтез полипептидов Rh с молекуляр-ной массой 30-32 kДa [3], состоящих из 417 аминокис-лот. Гидрофобные белки пронизывают мембрану эри-троцита в 12 местах, образуя 6 петель, состоящих из внеклеточной, внутримембранной и внутриклеточ-ной частей [4] и имеющих внутримембранные N-и C-концевые последовательности. Ген RHD кодирует синтез антигена D, ген RHCE -антигенов С / с и Е / е. Лиц, на эритроцитах которых антиген D присутствует, относят к резус-положительным, а тех, кто не имеет данного антигена, -к резус-отрицательным.Серологические методы фенотипирования эри-троцитов, основанные на агглютинации эритроцитов моноклональными антителами, доступны, экономич-ны, легковоспроизводимы и быстры в исполнении. Они специфичны и обладают достаточной чувстви-тельностью, пригодны для рутинных скрининговых исследований. Однако только сочетание серологиче-ских методов с молекулярными методами исследова-ния позволяет понять истинные механизмы формиро-
Introduction. The identification of weak variants of the A antigen, as well as their differentiation, is necessary for the proper selection of erythrocyte-containing media for blood transfusions. To this end, selective anti-A1 reagents that react only with the A1 antigen are used in combination with anti-A reagents reacting equally with the A1 and A2 antigens. Given that the expression of the A antigen varies within the subgroups and there is no established standard for reagents and procedures, the interpretation of the obtained results presents difficulties.Aim. To develop a strategy for identifying the variants of the A antigen using available reagents in an agglutination reaction.Methods. We compared the effectiveness of four anti-A1 and two anti-H reagents using 23 blood samples (groups A2 and A2B) and control samples (groups A1 and A1 B). Two types of anti-A1 reagents were employed: Dolychos biflorus lectin and monoclonal antibodies. All of the reagents were designed for direct agglutination reactions. Belonging of the erythrocytes to the A2 subgroup was confirmed using genetic analysis.Results. It is shown that anti-A1 reagents did not interact with A2B red blood cells and often reacted with A2 red blood cells. The strength of the reaction with A2 red blood cells varied greatly and was weaker than with A1 red blood cells; however, it hindered the subgroup identification. Simultaneous tests conducted using an anti-H reagent allowed the authors to draw an unambiguous conclusion about blood belonging to a subgroup: a strong reaction indicated the A2 subgroup, whereas a negative or weak reaction indicated the A1 subgroup. A discrepancy was noted between the results obtained for two donors using serological and molecular methods: the A3 subgroup was identified serologically, whereas genotyping revealed the AB0*A1 allele. In both cases, direct sequencing showed a combination of mutant alleles giving the A3 phenotype. When using commercial kits to perform genotyping analysis through a polymerase chain reaction, it should be taken into consideration that primers are matched to the most common variants and cannot detect all mutations of the AB0 gene.Conclusion. Reliable identification of the A2 subgroup through serological methods is possible when using lectin or monoclonal anti-A1 antibodies in combination with a monoclonal anti-H reagent.Conflict of interest: the authors declare no conflict of interest.Financial disclosure: the study had no sponsorship.
Background. Rhesus phenotype has been determined in 404 persons which have problems with blood groups identification. Genetic typing of antigen RhD variants was performed in 73 individuals. Objective of the work was to give molecular and serological characteristics of the antigen RhD weak types.Materials and methods. Method of rhesus phenotype determination in direct agglutination test on plane by using of anti-D, anti-C, anti-c, anti-Cw, anti-E and anti-e monoclonal antibodies; gel method of rhesus phenotype determination; methods of genetic typing of RhD; methods of antigen RhD determination in the classic indirect antiglobulin test and in the gel indirect antiglobulin test; method of antigen RhD determination in the saline agglutination test.Results. Serological methods identified 73 red blood samples with the weakened expression of RhD antigen. Molecular methods showed the reasons of weakness of antigen expression. Three RHD*D weak types which are common in Russians (RHD*D weak type 1–3) were identified and for the first time 3 types were found – RHD*D weak type 67, RHD(G255R) and RHD(JVS5-38del4). Serological characteristic of RhD weak types was given. It was shown that combined using of monoclonal antibodies in direct agglutination test and in gel is the most effective serological method of the antigen variants detection. Red blood cells with weak RhD antigens can be recognized by weakness or absence of agglutination with monoclonal antibodies on plane if agglutination in gel was 3+4+.Conclusion. Concrete weak RhD variants can be determined only by genetic typing. Serologically weak antigen variants can be detected by using of at least two series of monoclonal antibodies or by using of two different methods (it is preferable).
Фундаментальны е исследования в практической медицине на современном этапе Введение Пациенты с неэффективным гемопоэзом и анемией нуждаются в частых трансфузиях эритроцитов. В крови пациентов, перенесших трансфузии в течение 4 предшествующих месяцев, циркулируют как минимум 2 популяции эритроцитов-собственные
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.