This review deals with the properties of superconductors with competing electron spectrum instabilities, namely, charge-density waves (CDWs) and spin-density waves (SDWs). The underlying reasons of the electron spectrum instability may be either Fermi surface nesting or the existence of Van Hove saddle points for lower dimensionalities. CDW superconductors include layered dichalcogenides, NbSe 3 , and compounds with the A15 and C15 structures among others. There is much evidence to show that high-T c oxides may also belong to this group of materials. The SDW superconductors include URu 2 Si 2 and related heavy-fermion compounds, Cr-Re alloys and organic superconductors. We review the experimental evidence for CDW and SDW instabilities in a wide range of different superconductors, and assess the competition between these instabilities of the Fermi surface and the superconducting gap. Issues concerning the superconducting order parameter symmetry are also touched upon. The accent is put on establishing a universal framework for further theoretical discussions and experimental investigations based on an extensive list of available and up-to-date references.
Explicit and implicit experimental evidence for charge density wave (CDW) presence in high-Tcsuperconducting oxides is analyzed. The theory of CDW superconductors is presented. It is shown that the observed pseudogaps and dip-hump structures in tunnel and photoemission spectra are manifestations of the same CDW gapping of the quasiparticle density of states. Huge pseudogaps are transformed into modest dip-hump structures at low temperatures,T, when the electron spectrum superconducting gapping dominates. Heat capacity jumps at the superconducting critical temperature and the paramagnetic limit are calculated for CDW superconductors. For a certain range of parameters, the CDW state in ad-wave superconductor becomes reentrant withT, the main control quantity being a portion of dielectrcally gapped Fermi surface. It is shown that in the weak-coupling approximation, the ratio between the superconducting gap at zero temperatureΔ(T=0)andTchas the Bardeen-Cooper-Schrieffer value fors-wave Cooper pairing and exceeds the corresponding value ford-wave pairing of CDW superconductors. Thus, large experimentally found values2Δ(T=0)/Tc≈5÷8are easily reproduced with reasonable input parameter values of the model. The conclusion is made that CDWs play a significant role in cuprate superconductivity.
The properties of existing superconductors with ejectron spectrum instabilities, namely charge-density waves (CDWs) and spin-density waves (SDWs), are reviewed. In such substances the superconducting gap exists over the whole Fermi surface, whereas the dielectric gap emerges only on its nested sections. In particular, CDW superconductors include layered dichalcogenides, NbSe3, compounds with the A15 and C15 structures, etc. There is a lot of evidence that high-Tc oxides also belong to this group of materials. SDW superconductors include, e.g., URu2Si2 and related heavy-fermion compounds, Cr–Re alloys and organic superconductors. The theoretical description given in this review is based mostly on the Bilbro-McMillan model of the partially dielectrized metal. Various thermodynamic and electrodynamic properties are calculated in the framework of this model. The main subject of the review is the nonstationary Josephson effect in tunnel junctions involving CDW or SDW superconductors. A new effect of symmetry breaking in symmetrical tunnel junctions is predicted by the authors. A comparison with experiment is given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.