The substrate specificity of recombinant full-length diguanylate cyclase (DGC) of Thermotoga maritima with mutant allosteric site was investigated. It has been originally shown that the enzyme could use GTP closest analogues - 2'-deoxyguanosine-5'-triphosphate (dGTP) and 9-β-D-arabinofuranosyl-guanine-5'-triphosphate (araGTP) as the substrates. The first demonstrations of an enzymatic synthesis of bis-(3'-5')-cyclic dimeric deoxyguanosine monophosphate (c-di-dGMP) and the previously unknown bis-(3'-5')-cyclic dimeric araguanosine monophosphate (c-di-araGMP) using DGC of T. maritima in the form of inclusion bodies have been provided.
Enzymatic 5'-monophosphorylation and 5'-phosphatidylation of a number of beta-L- and beta-D-nucleosides was investigated. The first reaction, catalyzed by nucleoside phosphotransferase (NPT) from Erwinia herbicola, consisted of the transfer of the phosphate residue from p-nitrophenylphosphate (p-NPP) to the 5'-hydroxyl group of nucleoside; the second was the phospholipase D (PLD)-catalyzed transphosphatidylation of L-alpha-lecithin with a series of beta-L- and beta-D-nucleosides as the phosphatidyl acceptor resulted in the formation of the respective phospholipid-nucleoside conjugates. Some beta-L-nucleosides displayed similar or even higher substrate activity compared to the beta-D-enantiomers.
The authors of this paper theoretically substantiated the cancer treatment method, using in situ activation of dendritic cells with intratumoral injection of two molecular “danger signals” of bacterial origin – plasmid DNA containing unmethylated CpG-dinucleotides and cyclic diguanosine monophosphate (cyclo-diGMP). Based on literature data it might be presumed that this procedure is capable to release from the dying cancer cells a large number of tumor-associated mutant proteins, to recruit effector immune cells into the tumor bed, to activate dendritic cells and as a result to induce a potent anti-cancer T-cellular immune response leading to elimination of both primary solid tumors and possible metastases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.