Bladder cancer is a common disease with a high recurrence rate. In order to improve the treatment of superficial bladder tumors, we evaluated the efficacy and safety of transurethral resection (TURB) followed by fluorescence diagnosis (FD) and photodynamic therapy (PDT) with chlorin e6 photosensitizers (PSs), viz. “Fotoran e6” and “Fotoditazin”. It was found that both PSs generated singlet oxygen and revealed moderate affinity toward the lipid-like compartment. Between November 2018 and October 2020, 12 patients with verified non-muscle invasive bladder cancer (NMIBC) were treated by TURB combined with FD and PDT. Eight patients received “Fotoran e6” intravenously, while four patients received intravesical PSs. The patient ages were between 31 and 79 years, with a median age of 64.5 years (mean 61.3 ± 14.2). The total light dose was 150 J/cm2 for the local irradiation of the tumor bed with a red light at the λ = 660 nm wavelength, and 10–25 J/cm2 were additionally delivered for diffuse irradiation of the entire bladder mucosa. At the median follow-up period of 24 months (mean 24.5 ± 5.4 months, range 16–35 months), 11 patients remained tumor-free. One 79-year-old patient developed a recurrence without progression to the muscle layer. This pilot study shows that the TURB + FD + PDT technique is an effective and safe option for the first-line treatment of superficial bladder tumors.
Cancer is one of the leading causes of death worldwide. Despite substantial progress in the understanding of tumor biology, and the appearance of new generations of targeted drugs and treatment techniques, the success achieved in this battle, with some notable exceptions, is still only moderate. Photodynamic therapy (PDT) is a successful but still underestimated therapeutic modality for treating many superficial cancers. In this paper, we focus on the extensive investigation of the monocationic chlorin photosensitizer (PS), considered here as a new photosensitizing agent for both antitumor and antimicrobial PDT. This monocationic chlorin PS (McChl) obtained from methylpheophorbide a (MPh) via a two-step procedure is well soluble in water in the physiological temperature range and forms stable complexes with passive carriers. McChl generates singlet oxygen with a good quantum yield in a lipid-like environment and binds mainly to low- and high-density lipoproteins in a vascular system. A comparison of the photodynamic activity of this agent with the activity of the well-established photosensitizer chlorin e6 (Chl e6) clearly indicates that McChl provides a much more efficient photoinactivation of malignant and microbial cells. The pilot PDT treatment of M1 sarcoma-bearing rats with this PS demonstrates its good potential for further preclinical investigations.
The flow cell modeling clinical conditions have been used to study the interaction between dilute chemolytic solutions and large calcium oxalate renal stones. The stone treatment with 5% disodium ethylenediaminetetraacetate aqueous solutions or citrate buffer are found not to provide notable disruption of the samples studied. The significant improvement is reached with the mixed compositions containing both natural and synthetic chelating reagents:citrate and ethylenediaminetetraacetate ions as well as an antibiotic. Description of the chemolytic irrigation, numerical results and their possible clinical application are the main topic of the present research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.