The three primary steps in the production of tungsten carbide WC and titanium carbide TiC powders are the preparation of the green mixture, carbidization by furnace annealing, and ball milling of the annealed products. This work performed a comprehensive parametric investigation of these three steps. The impact of several factors was examined including the carbon precursor, the mass and diameter of the milling bodies (balls), the milling time and speed, the temperature and length of the annealing process, the height of the powder in the furnace boats, and the rate at which the furnace boats move. Regression models for every stage of the process were verified by 10-fold validation and used to optimize the synthesis sequence, resulting in high-quality WC and TiC with a grain size below 2 microns and a content of free carbon below 0.1%. Additionally, solid solution (W,Ti)C was fabricated by mechanochemical synthesis from the elemental mixtures; however, further modification of this technique is necessary because of the observed relatively high concentration of residual free carbon (0.2–0.8%) and contamination by Fe.
The purpose of the study is to determine the effect of nanosized additives on the structure and properties of the T15K6 hard alloy.Methods. These studies were carried out using an S-3400N electron microscope. The mechanical and physical properties of the structure of a hard alloy of the WC-TiC-Co system were studied using the example of T15K6 when nanosized tungsten powder and nanosized tungsten carbide powder with cobalt deposited on it were introduced into the initial charge using an optical and electron microscope; An X-ray spectrum analysis of the obtained samples of the T15K6 hard alloy was carried out on a DRON-4 X-ray diffractometer.Results. A hard alloy of the WC-TiC-Co system was studied with the introduction of nanosized tungsten powder into the initial charge, as well as with the introduction of nanosized tungsten carbide with cobalt deposited on its surface.In the work, the used powders of tungsten, nano-tungsten, cobalt, titanium carbide, tungsten carbide, nano-powder of tungsten carbide were studied, and the microstructure of the obtained hard alloys was also studied. It is shown that the coercive force of the T15K6 alloy depends on the size of the cobalt phase regions in the alloy; measuring its value makes it possible to judge the size of carbide grains. To improve the strength properties of hard alloys of the WC-TiCCo system, it is recommended to introduce nanosized WC additives or WC nanopowder with deposited cobalt.Conclusion. To improve the strength properties of hard alloys of the WC-TiC-Co system, it is recommended to introduce nanosized WC additives or WC nanopowder with deposited cobalt. The introduction of these additives into the composition of the powder charge of the T15K6 hard alloy leads to an increase in the ultimate bending strength by 15%. The introduction of nanosized WC additives or WC nanopowder with deposited cobalt makes it possible to obtain a fine-grained structure with a grain size of no more than 4–6 μm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.