The time it takes a bound electron to respond to the electromagnetic force of light sets a fundamental speed limit on the dynamic control of matter and electromagnetic signal processing. Time-integrated measurements of the nonlinear refractive index of matter indicate that the nonlinear response of bound electrons to optical fields is not instantaneous; however, a complete spectral characterization of the nonlinear susceptibility tensors--which is essential to deduce the temporal response of a medium to arbitrary driving forces using spectral measurements--has not yet been achieved. With the establishment of attosecond chronoscopy, the impulsive response of positive-energy electrons to electromagnetic fields has been explored through ionization of atoms and solids by an extreme-ultraviolet attosecond pulse or by strong near-infrared fields. However, none of the attosecond studies carried out so far have provided direct access to the nonlinear response of bound electrons. Here we demonstrate that intense optical attosecond pulses synthesized in the visible and nearby spectral ranges allow sub-femtosecond control and metrology of bound-electron dynamics. Vacuum ultraviolet spectra emanating from krypton atoms, exposed to intense waveform-controlled optical attosecond pulses, reveal a finite nonlinear response time of bound electrons of up to 115 attoseconds, which is sensitive to and controllable by the super-octave optical field. Our study could enable new spectroscopies of bound electrons in atomic, molecular or lattice potentials of solids, as well as light-based electronics operating on sub-femtosecond timescales and at petahertz rates.
Integrated photonics will play a key role in quantum systems as they grow from few-qubit prototypes to tens of thousands of qubits. The underlying optical quantum technologies can only be realized through the integration of these components onto quantum photonic integrated circuits (QPICs) with accompanying electronics. In the last decade, remarkable advances in quantum photonic integration have enabled table-top experiments to be scaled down to prototype chips with improvements in efficiency, robustness, and key performance metrics. These advances have enabled integrated quantum photonic technologies combining up to 650 optical and electrical components onto a single chip that are capable of programmable quantum information processing, chip-to-chip networking, hybrid quantum system integration, and high-speed communications. In this roadmap article, we highlight the status, current and future challenges, and emerging technologies in several key research areas in integrated quantum photonics, including photonic platforms, quantum and classical light sources, quantum frequency conversion, integrated detectors, and applications in computing, communications, and sensing. With advances in materials, photonic design architectures, fabrication and integration processes, packaging, and testing and benchmarking, in the next decade we can expect a transition from single- and few-function prototypes to large-scale integration of multi-functional and reconfigurable devices that will have a transformative impact on quantum information science and engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.