The high-energy potential of wastewater sewage sludge (SS) produced in large amounts around the world makes it an attractive feedstock for fuels and energy sectors. Thermochemical valorization relying on pyrolysis of SS followed by hydrotreatment of pyrolysis oil (Py-SS) might even allow the integration of SS into existing oil refineries. In the present study, catalytic hydrotreatment of Py-SS was performed over a NiCuMo-P-SiO2 catalyst in a batch reactor at temperatures in the range of 200–390 °C. Due to sulfur presence in the feed, the increasing reaction temperature induced in situ transformation of metallic Ni into Ni3S2 in the catalyst. In contrast, the Ni3P active phase possessed remarkable stability even at the harshest reaction conditions. The oxygen content in the reaction products was decreased by 59%, while up to 52% of N and 89% of S were removed at 390 °C. The content of free fatty acids was greatly reduced by their conversion to n-alkanes, while the larger amount of volatile aromatics was generated from high molecular mass compounds. The quality of oil-derived products greatly changed at elevated temperatures, providing strong evidence of effective upgrading via decarboxy(ny)lation, hydrogenation, and hydrocracking transformations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.